If it starts from 0m/s...
s=?
u=0
a=-10
t=8
s=ut +1/2at^2
so s=(0×8)+ (0.5×-10×64)
s=0+(32×-10)
s=32×-10
s=-320metres
Answer:
We conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Explanation:
Given
To determine
Mass m = ?
Important Tip:
-
The mass of a rock can be found using the formula F = ma
Using the formula

where
- a is the acceleration (m/s²)
now substituting F = 500, and a = 75 m/s² in the formula


switch sides

Divide both sides by 75

simplify

kg
Therefore, we conclude that the mass of a rock with a force of 500 N and an acceleration of 75 m/s² is 6.7 kg.
Hence, option D is correct.
Given data
Power (P) = 50 hp,
= 50 × 746, we know that 1 hp = 746 W.
= 37300 Watts (Watt = J/s)
Work = 6.40 ×10⁴ J
Power is defined as rate of doing work and the unit of power is<em> Watt.</em>
Mathematically,
Power = (Work / time) Watts
= 6.40 ×10⁴ / time
37300 W = 6.40 ×10⁴ J /time (Where time in seconds)
=> time = Work/Power
= 6.40 ×10⁴/37300
= <em>1.74 seconds </em>
<em> </em><em>Therefore , the engine need 1.74 seconds to do 6.40 6.40 ×10⁴ J of work </em>
<em> </em>
Answer:
Explanation:
Given
Initial Moment of Inertia 
initial Spin 

Final Moment Moment of Inertia 
Conserving Angular momentum




