Answer:
1.196 μm
Explanation:
D = Screen distance = 3 m
= Wavelength = 598 m
y = Distance of first-order bright fringe from the center of the central bright fringe = 4.84 mm
d = Slit distance
![tan\theta=\frac{y}{D}\\\Rightarrow \theta=tan^{-1}{\frac{y}{D}}\\\Rightarrow \theta=tan^{-1}{\frac{4.84\times 10^{-3}}{3}}\\\Rightarrow \theta=0.09243\ ^{\circ}](https://tex.z-dn.net/?f=tan%5Ctheta%3D%5Cfrac%7By%7D%7BD%7D%5C%5C%5CRightarrow%20%5Ctheta%3Dtan%5E%7B-1%7D%7B%5Cfrac%7By%7D%7BD%7D%7D%5C%5C%5CRightarrow%20%5Ctheta%3Dtan%5E%7B-1%7D%7B%5Cfrac%7B4.84%5Ctimes%2010%5E%7B-3%7D%7D%7B3%7D%7D%5C%5C%5CRightarrow%20%5Ctheta%3D0.09243%5C%20%5E%7B%5Ccirc%7D)
![sin\theta=\frac{\lambda}{d}\\\Rightarrow d=\frac{\lambda}{sin\theta}\\\Rightarrow d=\frac{598\times 10^{-9}}{sin0.09243}\\\Rightarrow d=0.00037066\ m](https://tex.z-dn.net/?f=sin%5Ctheta%3D%5Cfrac%7B%5Clambda%7D%7Bd%7D%5C%5C%5CRightarrow%20d%3D%5Cfrac%7B%5Clambda%7D%7Bsin%5Ctheta%7D%5C%5C%5CRightarrow%20d%3D%5Cfrac%7B598%5Ctimes%2010%5E%7B-9%7D%7D%7Bsin0.09243%7D%5C%5C%5CRightarrow%20d%3D0.00037066%5C%20m)
For first dark fringe
![dsin\theta=\frac{\lambda'}{2}\\\Rightarrow \lambda'=2dsin\theta\\\Rightarrow \lambda'=2\times 0.00037066\times sin0.09243\\\Rightarrow \lambda'=1.196\times 10^{-6}\\\Rightarrow \lambda'=1.196\ \mu m](https://tex.z-dn.net/?f=dsin%5Ctheta%3D%5Cfrac%7B%5Clambda%27%7D%7B2%7D%5C%5C%5CRightarrow%20%5Clambda%27%3D2dsin%5Ctheta%5C%5C%5CRightarrow%20%5Clambda%27%3D2%5Ctimes%200.00037066%5Ctimes%20sin0.09243%5C%5C%5CRightarrow%20%5Clambda%27%3D1.196%5Ctimes%2010%5E%7B-6%7D%5C%5C%5CRightarrow%20%5Clambda%27%3D1.196%5C%20%5Cmu%20m)
Wavelength of first-order dark fringe observed at this same point on the screen is 1.196 μm
Answer:
(a) 91 kg (2 s.f.) (b) 22 m
Explanation:
Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.
(a)
![s \ = \ ut \ + \ \displaystyle\frac{1}{2} at^{2} \\ \\ a \ = \ \displaystyle\frac{2(s \ - \ ut)}{t^{2}} \\ \\ a \ = \ \displaystyle\frac{2(11 \ - \ 0)}{5^{2}} \\ \\ a \ = \ \displaystyle\frac{22}{25} \\ \\ a \ = \ 0.88 \ \mathrm{m \ s^{-2}}](https://tex.z-dn.net/?f=s%20%5C%20%3D%20%5C%20ut%20%5C%20%2B%20%5C%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7D%20at%5E%7B2%7D%20%5C%5C%20%5C%5C%20a%20%5C%20%3D%20%5C%20%5Cdisplaystyle%5Cfrac%7B2%28s%20%5C%20-%20%5C%20ut%29%7D%7Bt%5E%7B2%7D%7D%20%5C%5C%20%5C%5C%20a%20%5C%20%3D%20%5C%20%5Cdisplaystyle%5Cfrac%7B2%2811%20%5C%20-%20%5C%200%29%7D%7B5%5E%7B2%7D%7D%20%5C%5C%20%5C%5C%20a%20%5C%20%3D%20%5C%20%5Cdisplaystyle%5Cfrac%7B22%7D%7B25%7D%20%5C%5C%20%5C%5C%20a%20%5C%20%3D%20%5C%200.88%20%5C%20%5Cmathrm%7Bm%20%5C%20s%5E%7B-2%7D%7D)
Subsequently,
![F \ = \ ma \\ \\ m \ = \ \displaystyle\frac{F}{a} \\ \\ m \ = \ \displaystyle\frac{80 \ \mathrm{kg \ m \ s^{-2}}}{0.88 \ \mathrm{m \ s^{-2}}} \\ \\ m \ = \ 91 \mathrm{kg} \ \ \ \ \ \ (2 \ \mathrm{s.f.})](https://tex.z-dn.net/?f=F%20%5C%20%3D%20%5C%20ma%20%5C%5C%20%5C%5C%20m%20%5C%20%3D%20%5C%20%5Cdisplaystyle%5Cfrac%7BF%7D%7Ba%7D%20%5C%5C%20%5C%5C%20m%20%5C%20%3D%20%5C%20%5Cdisplaystyle%5Cfrac%7B80%20%5C%20%5Cmathrm%7Bkg%20%5C%20m%20%5C%20s%5E%7B-2%7D%7D%7D%7B0.88%20%5C%20%5Cmathrm%7Bm%20%5C%20s%5E%7B-2%7D%7D%7D%20%5C%5C%20%5C%5C%20m%20%5C%20%3D%20%5C%2091%20%5Cmathrm%7Bkg%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%282%20%5C%20%5Cmathrm%7Bs.f.%7D%29)
*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.
(b) To find the final velocity of the ice block at the end of the first 5 seconds,
![v \ = \ u \ + \ at \\ \\ v \ = \ 0 \ + \ (0.88 \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \\ \\ v \ = \ 4.4 \ \mathrm{m \ s^{-1}}](https://tex.z-dn.net/?f=v%20%5C%20%3D%20%5C%20u%20%5C%20%2B%20%5C%20at%20%5C%5C%20%5C%5C%20v%20%5C%20%3D%20%5C%200%20%5C%20%2B%20%5C%20%280.88%20%5Cmathrm%7Bm%20%5C%20s%5E%7B-2%7D%7D%29%285%20%5C%20%5Cmathrm%7Bs%7D%29%20%5C%5C%20%5C%5C%20v%20%5C%20%3D%20%5C%204.4%20%5C%20%5Cmathrm%7Bm%20%5C%20s%5E%7B-1%7D%7D)
According to Newton's First Law which states objects will remain at rest
or in uniform motion (moving at constant velocity) unless acted upon by
an external force. Hence, the block of ice by the end of the first 5
seconds, experiences no acceleration (a = 0) but travels with a constant
velocity of 4.4
.
![s \ = \ ut \ + \ \displaystyle\frac{1}{2}at^{2} \\ \\ s \ = \ (4.4 \ \mathrm{m \ s^{-2}})(5 \ \mathrm{s}) \ + \ \displaystyle\frac{1}{2}(0)(5^{2}) \\ \\ s \ = \ 22 \ \mathrm{m}](https://tex.z-dn.net/?f=s%20%5C%20%3D%20%5C%20ut%20%5C%20%2B%20%5C%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7Dat%5E%7B2%7D%20%5C%5C%20%5C%5C%20s%20%5C%20%3D%20%5C%20%284.4%20%5C%20%5Cmathrm%7Bm%20%5C%20s%5E%7B-2%7D%7D%29%285%20%5C%20%5Cmathrm%7Bs%7D%29%20%5C%20%2B%20%5C%20%5Cdisplaystyle%5Cfrac%7B1%7D%7B2%7D%280%29%285%5E%7B2%7D%29%20%5C%5C%20%5C%5C%20s%20%5C%20%3D%20%5C%2022%20%5C%20%5Cmathrm%7Bm%7D)
Therefore, the ice block traveled 22 m in the next 5 seconds after the
worker stops pushing it.
<u>Answer</u>: The mass of the object is 25kg.
The given question deals with Newton's second law of motion and its applications.
<u>Explanation:</u> Given force, F=500N
acceleration, a=20 m/![s^{2}](https://tex.z-dn.net/?f=s%5E%7B2%7D)
From Newton's 2nd law of motion , we have
F=ma where m=mass of the object
⇒500=m×20
⇒m=500/20=25
∴ Mass of the object is 25 kg .
<u> </u><u>Reference Link: </u>brainly.com/question/1141170
#SPJ2
"A is correct answer." The effective length of the tube is responsible for determining the frequency of vibration of the air column in the tube within a wind instrument. "Hope this helps!" "Have a great day!" "Thank you for posting your question!"
Answer:
but where is the question ?
Explanation:
<em>hope</em><em> it</em><em> </em><em>works</em><em> out</em>