Radiation is the only transfer in a vacuum
Answer:
total current = 12.417 A
so it will not fuse as current is less than 15 A
Explanation:
given data
toaster = 1140-W
blender = 270-W
lamp = 80-W
voltage = 120 V
solution
we know that current is express as
current = power ÷ voltage ......................1
here voltage is same in all three device
so
current by toaster is
I = 
I = 9.5 A
and
current by blender
I = 
I = 2.25 A
and
current by lamp is
I = 
I = 0.667 A
so here device in parallel so
total current is = 9.5 A + 2.25 A + 0.667 A
total current = 12.417 A
so it will not fuse as current is less than 15 A
C is the correct answer hope this helps :)
The ratio of the kinetic energy of the block/bullet system immediately after the collision to the initial kinetic energy of the bullet is 0.78 %.
<h3>Final velocity of the block/bullet system</h3>
Apply the principle of conservation of energy to determine the final velocity of the block/bullet system.
K.E = P.E
¹/₂mv² = mgh
¹/₂v² = gh
v² = 2gh
v = √2gh
where;
- h is the maximum height reached by the system
- v is the initial velocity of the system
v = √(2 x 9.8 x 1.1)
v = 4.64 m/s
<h3>Initial velocity of the bullet</h3>
Apply the principle of conservation of linear momentum.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
where;
- u₁ is the initial velocity of the bullet
- u₂ is the initial velocity of the block
- v is the final velocity after collision
- m₁ is mass bullet
- m₂ is mass of block
(0.0075)u₁ + (0.95)(0) = 4.64(0.0075 + 0.95)
0.0075u₁ = 4.4428
u₁ = 4.4428/0.0075
u₁ = 592.37 m/s
<h3>Initial kinetic energy of the bullet</h3>
K.Ei = ¹/₂m₁u₁²
K.Ei = ¹/₂(0.0075)(592.37)²
K.Ei = 1,315.88 J
<h3>Final kinetic energy of the block/bullet system</h3>
K.Ef = ¹/₂(m₁ + m₂)v²
K.Ef = ¹/₂(0.0075 + 0.95)(4.64)²
K.Ef = 10.31 J
<h3>Ratio of final kinetic energy to initial kinetic energy</h3>
= K.Ef/K.Ei x 100%
= (10.31 / 1,315.88) x 100%
= 0.78 %
Learn more about kinetic energy here: brainly.com/question/25959744
#SPJ1