Answer:
response
Explanation:
Acceleration is your changing Velocity. An object that is ACCELERATING is experiencing a change in velocity. usually positive. if an object such as a car reduces velocity, it is called deceleration
Answer:
current in series is 2.50 mA
current in parallel is 13.51 mA
Explanation:
given data
voltage = 5 V
resistors R1 = 1.5 kilo ohms
resistors R2 = 0.5 kilo ohms
to given data
current flow
solution
current flow in series is express as here
current = voltage / resistor .................1
put here all value in equation 1
current = 5 / (1.5 + 0.5)
current = 5 / 2.0
so current = 2.50 mA
and
current flow in parallel is express as
current = voltage / resistor ....................2
put here all value in equation 2
current = 5 / (1/ (1/1.5 + 1/0.5))
current = 5 / 0.37
so current = 13.31 mA
Answer:
H = Vy t - 1/2 g t^2 height of an object with an initial "vertical" velocity
at t sec after firing
Vy = 78 m/s * sin 40 = .643 * 78 m/s = 50.1 m/s
H = 50.1 * 6 - 1/2 * 9.8 * 6^2 = 300 m - 176 m = 124 m
Answer:
c: long and thin resistor.
Explanation:
The resistance of a resistor is given by:
R = ρ*L/A
where:
R = resistance
ρ = resistivity (depends on the material)
L = length of the material
A = cross-sectional area of the material
We can see that the length is on the numerator, which means that if we increase the length, then the resistance is increased.
We also can see that the cross-sectional area is on the denominator, then if we increase the area (for example, with a ticker resistor) the resistance decreases.
Then if we want to maximize the resistance, we need to have a long and thin resistor, so the correct answer is c.
If it starts at rest the initial velocity is 0.
For an acceleration, a, and time, t, the velocity is v=at. Since at t=4, v=7, then a=7/4=1.75m/s^2