Answer:
178.55
Explanation:
176
×
0.05+
177
×
0.19
+
178
×
0.27
+
179
×
0.14
+
180
×
0.35
=
178.55
Answer:
9) Substitution Reaction
10) Covalent Bond
11) Ionic Bond
12) Covalent Bond
13) Ionic Bond
14) 9 atoms
Explanation:
9) Substitution Reaction: Substitution reaction is a chemical reaction in which one atom, ion or species replaced by another atom, ion or species
10) Covalent Bond: Covalent bond is a bond that formed between two nonmetals, when both the species are non metal, the electronegativity of both the nonmetals are comparatively same, hence any of both do not pulls completely electron of other & the bond is formed by the sharing of electron.
11) Ionic Bond: We know that nonmetals have high electronegativity than those of metals, due to high electronegativity non metals pulls the electrons of metals but there is enough interaction that non metal do not escape after pulling the electron, & an ionic bond generates where non metals possess negative charge & positive charge goes to metal.
12) Covalent Bond: The bond formed between two atoms having less electronegativity diffrence by sharing of electron pair is know as covalent bond. for e.g the Carbon - Hydrogen bond in methane (CH4) molecule is covalent bonded because the electronegativity of carbon is 2.5 & that of hydrogen is 2.1 which is almost close, hence the bond formed is covalent.
13) Ionic Bond: The bond formed between two atoms having high electronegativity diffrence & the bond formed is due to complete transfer of electron by one species. For e.g. NaCl the sodium is a metal having electronegativity 0.9 and chlorine is non metal having electronegativity 3.0 the electronegativity diffrence is too high, hence the chlorine behaves as Cl- ion that of sodium as Na+, both the components behaves as ion but they are bonded &that bond is called as Ionic bond.
14) 9 Atoms: One molecule of water (H2O) posses three atoms, two hydrogen atoms & one oxygen atom, the number of atoms in 3 molecules of water 3×3 = 9 atoms.
<em><u>Thanks for joining brainly community!</u></em>
The answer is protons. Neutrons have no charge and electrons have a negative charge so the positive charge must be protons.
For a p type of semiconductor we need a dopant which is from 13th group in periodic table
Al , B, Ga, In Tl
So the correct element will be In : Indium
The other elements belongs to 15th group and hence will give n type semiconductor
Answer:
we know that gas molecules move fast by hitting the container and they never meet,so if we have one single gas molecule then it will move slower . This is because it is alone in an empty container so until it hits the container to change it's movements it will make the process slower.
Read the explanation below to have a better idea based on the kinetic molecular theory.
Explanation:
Hello in this question we have a container and in it is a single gas molecule. So there is our gas molecule and in fact right there that violates the kinetic molecular theory. Because the kinetic molecular theory thinks of these particles as being dimension less points. Because there is so much space between particles. The particles themselves have such an insignificant volume as they can be thought of as dimension lys points. Okay. But anyway this particle is in rapid motion and this motion is essentially random. So it's moving and it will eventually hit the wall of its container. It's moving rapidly so it's going to hit it pretty quickly and when it hits the wall of that container Yeah, it is going to bounce off when it does that. It's a totally elastic collision. So that means there will be no energy transfer, no energy loss, no energy gained. It will just serve to change the direction of the particle. So when it hits the wall it's going to bounce back off the wall and continue in a straight line until it hits another wall and then it will bounce off that wall and it will continue moving in this motion in this motion its speed is related to the amount of energy it has and therefore its temperature. So if we add heat, it will move faster. If we remove heat or cool it down, it will move slower. So when we remove heat, it will move slower. The kinetic molecular theory says it will be constantly moving As long as it is above absolute zero. It's only at absolute zero or 0 Kelvin, where would stop moving. Okay, so all these things describe its motion. It's in rapid random motion in a straight line until it hits the wall of its container. Then it will rebound without a transfer of any energy. It will be totally elastic collision. If we were to heat it up, it would move faster. If we were to cool it down, it would move more slowly, we would have to cool it all the way down to absolute zero before it would stop moving. Right, so all of these things describe its motion. In terms of that kinetic molecular theory,