Hello there!
The statement that Acid strength in a series of H-A molecules increases with increasing size of A is True.
When only the size is involved, increasing the size will increase the Acid strength because as size increases, the H-A bond will become weaker as the atoms will be farther apart. Acid strength is related to the ability to release H⁺ ions and a weaker H-A bond will release H⁺ more easily.
Have a nice day!
This family (ethane, propane, butane, etc) of materials is likely to have following set of properties.
- The alkanes are non- polar solvents.
- The alkanes are immiscible in water but freely miscible in other non-polar solvent .
- The alkanes are consisting of weak dipole dipole bonds can not breaks the strong hydrogen bond.
- The alkanes having only carbon (C) and hydrogen (H) atom which is bonded by a single bonds only.
- The alkanes posses weak force of attraction that is weak van der waals force of attraction.
The ethane, propane, butane, belong to alkanes family.The alkanes are also considers as saturated hudrocarbons. Ethane is found in gaseous stae Ethane is the second alkane followed by propane followed by butane.
learn about butane
brainly.com/question/14818671
#SPJ4
I think the answer is 1.25 grams actually i think i’m wrong
Answer:
513.74 g of solution
Explanation:
% Mass grams are defined as the <em>grams that are dissolved in salt</em> (in this case, it would be <em>potassium nitrate</em>) <em>dissolved every 100 g of the solution</em>. Having this information, you can calculate the amount of solution that has dissolved 18.7 g of potassium nitrate, which is what we want to obtain.
The relationship is:
3.64 g of potassium nitrate _____ 100 g solution
18.7 g of potassium nitrate _____ X = 513.74 g of solution
Calculation: 18.7g x 100g / 3.64g = 513.74 g of solution
So, <em>I need 513.74 g of solution to get 18.7g of potassium nitrate by evaporating it</em>.
<span>A reducing agent loses electrons, so on the left side of the equation N in HNO2 has an oxidation number of +3 and on the right side in NO3^- it has an oxidation number of +5, so it has lost electrons. Thus, the reducing agent would be HNO2.</span>