Carbon is the one and only element to make a molecule organic.
Answer:
The correct answer is A) circulatory
Explanation:
The circulatory system collects metabolic wastes from the blood, which will be eliminated by the kidneys through urine.
The kidneys are responsible for the elimination of waste, acids and excess fluid from the body, maintaining the balance of water, salts and minerals. Blood flows into the kidney through the renal artery.
Answer:
The four coefficients in order, separated by commas are 1, 8, 5, 6
Explanation:
We count the atoms in order to balance this combustion reaction. In combustion reactions, the products are always water and carbon dioxide.
C₅H₁₂ + ?O₂→ ?CO₂ + ?H₂O
We have 12 hydrogen in right side and we can balance with 6 in the left side. But the number of oxygen is odd. We add 2 in the right side, so we have 24 H, and in the product side we add a 12.
As we add 2 in the C₅H₁₂, we have 10 C, so we must add 10 to the CO₂ in the product side.
Let's count the oxygens: 20 from the CO₂ + 12 from the water = 32.
We add 16 in the reactant side. Balanced equation is:
2C₅H₁₂ + 16O₂→ 10CO₂ + 12H₂O
We also can divide by /2 in order to have the lowest stoichiometry
C₅H₁₂ + 8O₂→ 5CO₂ + 6H₂O
Proteins are made from long chains of smaller molecules called amino acids. These long chains are folded into particular shapes. This is important in relation to how antibodies and enzymes work.
Enzymes are biological catalysts. There are optimum temperatures and pH values at which their activity is greatest. Enzymes are also proteins. If the shape of an enzyme changes, it may no longer work (it is said to have been 'denatured'). maybe right?
Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g