Answer:
The law of floatation is applied in all vessels which travel by waterways that include ships, submarines and ferry boats. It is also applied in some vessels which travel by air ways such as hot air balloon and air ship. Balloons of different colors and shapes are filled with lighter gas so that will float in air.
Since
potassium and phosphate is what we are to find for and they are both found in
the potassium phosphate solution, therefore we solve for this one first on the
basis of the phosphate.
The formula
for finding the volume given the concentration and number of moles is:
Volume =
number of moles / concentration in Molarity
Volume
potassium phosphate required = 30 mmol phosphate / (3 mmol / mL)
<u>Volume
potassium phosphate required = 10 mL</u>
This would
also contain potassium in amounts of:
Amount of
potassium in potassium phosphate = 10 mL (4.4 meg / mL)
Amount of
potassium in potassium phosphate = 44 meg
Therefore
the potassium chloride required is:
Volume of
potassium chloride = (80 meg – 44 meg) / (2 meg / mL)
<span><u>Volume of
potassium chloride = 72 mL</u></span>
<u>Answer:</u> The mass percent of hydrogen in methyl acetate is 8 %
<u>Explanation:</u>
The given chemical formula of methyl acetate is 
To calculate the mass percentage of hydrogen in methyl acetate, we use the equation:

Mass of hydrogen = (6 × 1) = 6 g
Mass of methyl acetate = [(3 × 12) + (6 × 1) + (2 × 16)] = 74 g
Putting values in above equation, we get:

Hence, the mass percent of hydrogen in methyl acetate is 8 %
I believe you are referring zero as the exponent. <span>Any number (except 0) with exponent 0 is defined to mean 1.
</span>
For one thing, there is a rule:
<span> a^m/ a^m = a^m-m = a^0
</span>But (when a is not equal to <span>0),
</span>
a^m/ a^m = 1
Therefore, we must define a^0 as 1.