the overall equation for the conversation of pyruvate to acetyl COA is as below
CH3COO-COO- + NAD+ + HS-COA = ch3-COO-S -COA +NADH +CO2
The oxidation of pyruvate led to a conversation of NAD+ to NADH and produces acetyl COA and CO2
Answer:
Glucose = C6H12O6
molecular mass = 6(12) + 12(1) + 6(16)
= 72 + 12 + 96
= 180 g
Explanation:
Glucose has a chemical formula of: C6H12O6 That means glucose is made of 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms. ... Glucose is produced during photosynthesis and acts as the fuel for many organisms.
<span>2H2 + O2 → 2H2O</span>
<span>
</span>
<span>okay???</span>
<span>
</span>
Answer:
a) C6H5COOH + H2O ↔ H3O+ + C6H5COO-
b) [ H3O+ ] = 2.517 E-3 M
c) pH = 2.599
Explanation:
a) balanced equation:
C6H5COOH + H2O ↔ H3O+ + C6H5COO-
⇒ Ka = ( [ H3O+ ] * [ C6H5COO- ] ) / [ C6H5COOH ] = 6.5 E-5
mass balance:
0.10 m = [ C6H5COO- ] + [ C6H5COOH ].....(1)
charge balance:
[ H3O+ ] = [ C6H5COO- ] + [ OH- ] .......[ OH- ] : comes from water, it's not significant
⇒ [ H3O+ ] = [ C6H5COO- ] .........(2)
b) (2) in (1):
⇒ 0.10 M = [ H3O+ ] + [ C6H5COOH ]
⇒ [ C6H5COOH ] = 0.10 - [ H3O+ ]
⇒ Ka = [ H3O+ ]² / ( 0.1 - [ H3O+ ] ) = 6.5 E-5
⇒ [ H3O+ ]² + 6.5 E-5 [ H3O+ ] - 6.5 E-6 = 0
⇒ [ H3O+ ] = 2.517 E-3 M
c) pH = - log [ H3O+ ]
⇒ pH = - Log ( 2.517 E-3 )
⇒ pH = 2.599
In finding the molarity of a solution, we use the following formula:

What is Molarity?
The number of moles of the solute is calculated by dividing the mass of the solute by its molar mass.
<h3 />
The molar mass of NH4NO3 and (NH4)3PO4 are 80.043 g/mol and 149.0867 g/mol, respectively.




![[NH+4]=0.1596 mol20.0 L=7.98×10−3 M NH+4](https://tex.z-dn.net/?f=%5BNH%2B4%5D%3D0.1596%20mol20.0%20L%3D7.98%C3%9710%E2%88%923%20M%20NH%2B4)
![[PO3−4]=0.0296 mol20.0 L=1.48×10−3 M PO3−4](https://tex.z-dn.net/?f=%5BPO3%E2%88%924%5D%3D0.0296%20mol20.0%20L%3D1.48%C3%9710%E2%88%923%20M%20PO3%E2%88%924)
Therefore,
has a molarity of 
To learn more about Molarity click on the link below:
brainly.com/question/19943363
#SPJ4