The phase change in which the water molecules become most orderly is the freezing. This is the process of changing water as liquid to its solidified form. The process of freezing is an exothermic which means that for this to occur, heat should be removed from the system.
Answer:
Aluminum, boron, and gallium are likely together in one group because they have the same number of valence electrons, and carbon and germanium are likely together in another group because they have the same number of valence electrons.
Explanation:
To find - Identify what kind of ligand (weak or strong), what kind
of wavelength (long or short), what kind of spin (high spin or
low spin) and whether it is paramagnetic or diamagnetic for
the following complexes.
1. [Mn(CN)6]4-
2. [Fe(OH)(H2O)5]2
3. [CrCl4Br2]3-
Step - by - Step Explanation -
1.
[Mn(CN)⁶]⁴⁻ :
Ligand - Strong
Wavelength - Short
Spin - Low spin
Number of unpaired electrons = 1 ∴ paramagnetic.
2.
[Fe(OH)(H₂O)₅]²⁺ :
Ligand - Weak ( both OH⁻ and H₂O )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 5 ∴ paramagnetic.
3.
[CrCl₄Br₂]³⁻ :
Ligand - Weak ( both Br⁻ and Cl⁻ )
Wavelength - Long
Spin - High spin
Number of unpaired electrons = 3 ∴ paramagnetic.
Answer:
1.5 moles of Fe produced.
Explanation:
Given data:
Moles of FeO react = 1.50 mol
Moles of iron produced = ?
Solution:
Chemical equation:
FeO + CO → Fe + CO₂
Now we will compare the moles of ironoxide with iron.
FeO : Fe
1 : 1
1.5 : 1.5
Thus from 1.5 moles of FeO 1.5 moles of Fe are produced.