Positive unless your mean to them then everyones negative towards you.
Answer:
A solution is made by dissolving 4.87 g of potassium nitrate in water to a final volume of 86.4 mL solution. The weight/weight % or percent by mass of the solute is :
<u>2.67%</u>
Explanation:
Note : Look at the density of potassium nitrate in water if given in the question.
<u><em>You are calculating </em></u><u><em>weight /Volume</em></u><u><em> not weight/weight % or percent by mass of the solute</em></u>
Here the <u>weight/weight % or percent by mass</u> of the solute is asked : So first convert the<u> VOLUME OF SOLUTION into MASS</u>
Density of potassium nitrate in water KNO3 = 2.11 g/mL

Density = 2.11 g/mL
Volume of solution = 86.4 mL



Mass of Solute = 4.87 g
Mass of Solution = 183.2 g
w/w% of the solute =


w/w%=2.67%
Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
Answer:
We'll have 1 mol Al2O3 and 3 moles H2
Explanation:
Step 1: data given
Numer of moles of aluminium = 2 moles
Number of moles of H2O = 6 moles
Step 2: The balanced equation
2Al + 3H2O → Al2O3 + 3H2
Step 3: Calculate the limiting reactant
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
Aluminium is the limiting reactant. It will completely be consumed (2 moles).
H2O is in excess. There will react 3/2 * 2 = 3 moles
There will remain 6 - 3 = 3 moles
Step 4: Calculate moles products
For 2 moles Al we need 3 moles H2O to produce 1 mol Al2O3 and 3 moles H2
For 2 moles Al we'll have 2/1 = 1 mol Al2O3
For 2 moles Al We'll have 3/2 * 2 = 3 moles H2
We'll have 1 mol Al2O3 and 3 moles H2