1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
3 years ago
6

Are chemical reactions necessary in life

Physics
1 answer:
Salsk061 [2.6K]3 years ago
7 0
Yes they are necessary 
You might be interested in
Which type of energy is released when a bond between atoms is broken
Murrr4er [49]

Answer: gases

Explanation: because gases move around freely and they would be the only one to make sense because solid are compacted together and liquid are not so fast at moving but gases are wild                                          

dont use this this is a bad explanation

4 0
3 years ago
mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 2 feet below the equi
valina [46]

Answer:

The answer is

"x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))".

Explanation:

Taking into consideration a volume weight = 16 pounds originally extends a springs \frac{8}{3} feet but is extracted to resting at 2 feet beneath balance position.

The mass value is =

W=mg\\m=\frac{w}{g}\\m=\frac{16}{32}\\m= \frac{1}{2} slug\\

The source of the hooks law is stable,

16= \frac{8}{3} k \\\\8k=16 \times 3 \\\\k=16\times \frac{3}{8} \\\\k=6 \frac{lb}{ft}\\\\

Number \frac{1}{2}  times the immediate speed, i.e .. Damping force

\frac{1}{2} \frac{d^2 x}{dt^2} = -6x-\frac{1}{2}\frac{dx}{dt}+10 \cos 3t \\\\\frac{1}{2}  \frac{d^2 x}{dt^2}+ \frac{1}{2}\frac{dx}{dt}+6x =10 \cos 3t \\ \\\frac{d^2 x}{dt^2} +\frac{dx}{dt}+12x=20\cos 3t \\\\

The m^2+m+12=0 and m is an auxiliary equation,

m=\frac{-1 \pm \sqrt{1-4(12)}}{2}\\\\m=\frac{-1 \pm \sqrt{47i}}{2}\\\\\ m1= \frac{-1 + \sqrt{47i}}{2} \ \ \ \ or\ \ \ \ \  m2 =\frac{-1 - \sqrt{47i}}{2}

Therefore, additional feature

x_c (t) = e^{\frac{-t}{2}}[C_1 \cos \frac{\sqrt{47}}{2}t+ C_2 \sin \frac{\sqrt{47}}{2}t]

Use the form of uncertain coefficients to find a particular solution.  

Assume that solution equation,

x_p = Acos(3t)+B sin(3t) \\x_p'= -3A sin (3t) + 3B cos (3t)\\x_p}^{n= -9 Acos(3t) -9B sin (3t)\\

These values are replaced by equation ( 1):

\frac{d^2x}{dt}+\frac{dx}{dt}+ 12x=20 \cos(3t) -9 Acos(3t) -9B sin (3t) -3Asin(3t)+3B cos (3t) + 12A cos (3t) + 12B sin (3t)\\\\3Acos 3t + 3B sin 3t - 3Asin 3t + 3B cos 3t= 20cos(3t)\\(3A+3B)cos3t -(3A-3B)sin3t = 20 cos (3t)\\

Going to compare cos3 t and sin 3 t coefficients from both sides,  

The cost3 t is 3A + 3B= 20 coefficients  

The sin 3 t is 3B -3A = 0 coefficient  

The two equations solved:

3A+3B = 20 \\\frac{3B -3A=0}{}\\6B=20\\B= \frac{20}{6}\\B=\frac{10}{3}\\

Replace the very first equation with the meaning,

3B -3A=O\\3(\frac{10}{3})-3A =0\\A= \frac{10}{3}\\

equation is

x_p\\\\\frac{10}{3} cos (3 t) + \frac{10}{3} sin (3t)

The ultimate plan for both the equation is therefore

x(t)= e^\frac{-t}{2} (c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)

Initially, the volume of rest x(0)=2 and x'(0) is extracted by rest i.e.  

Throughout the general solution, replace initial state x(0) = 2,

Replace x'(0)=0 with a general solution in the initial condition,

x(t)= e^\frac{-t}{2} [(c_1 cos \frac{\sqrt{47}}{2}t)+c_2\sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}\cos (3t)+\frac{10}{3}\sin (3t)]\\\\

x(t)= e^\frac{-t}{2} [(-\frac{\sqrt{47}}{2}c_1\sin\frac{\sqrt{47}}{2}t)+ (\frac{\sqrt{47}}{2}c_2\cos\frac{\sqrt{47}}{2}t)+c_2\cos\frac{\sqrt{47}}{2}t)  +c_1\cos\frac{\sqrt{47}}{2}t +c_2\sin\frac{\sqrt{47}}{2}t + \frac{-1}{2}e^{\frac{-t}{2}} -10 sin(3t)+10 cos(3t) \\\\

c_2=\frac{-64\sqrt{47}}{141}

x(t)= e^\frac{-t}{2}((\frac{-4}{3})\cos\frac{\sqrt{47}}{2}t- \frac{-64\sqrt{47}}{141} \sin\frac{\sqrt{47}}{2}t)+\frac{10}{3}(\cos(3t)+ \sin (3t))

5 0
3 years ago
if a train starts from rest and attains a velocity of 100m/s in 25 seconds. calculate the acceleration produced by the train.​
stira [4]
-4 km/s2

Explanation:
0-100/25
-100/25
-4
5 0
3 years ago
The device used to measure a masses of a body is kilogram . true or false​
olga nikolaevna [1]

Answer: false

Explanation:

While kilograms are the unit used to measure body mass, the device used is a scale.

Hope it helps :)

6 0
3 years ago
A 300 g bird is flying along at 6.0 m/s and sees a 10 g insect heading straight towards it with a speed of 30 m/s. The bird open
Gelneren [198K]

Answer:

(a): The bird speed after swallowing the insect is V= 4.83 m/s

(b): The impulse on the bird is I= 0.3 kg m/s

(c): The force between the bird and the insect is F= 20 N

Explanation:

ma= 0.3 kg

va= 6 m/s

mb= 0.01kg

vb= 30 m/s

(ma*va - mb*vb) / (ma+mb) = V

V= 4.83 m/s (a)

I= mb * vb

I= 0.3 kg m/s  (b)

F*t= I

F= I/t

F= 20 N (c)

5 0
3 years ago
Other questions:
  • If a bat with a mass of 5 kg and acceleration of 2 m/s2 hits a ball whose mass is 0.5 kg in the forward direction, what is the r
    5·2 answers
  • a toy car moves around a loop-the-loop track.The loop is 0.5 high.What is the minimum speed of the car at the top of the loop fo
    9·1 answer
  • Differences Between light year and astronomical unit in two points .
    13·2 answers
  • An object has a mass of 24.5 Kilograms and an acceleration of 0 meters per second squared. What would be its first Force in Newt
    12·1 answer
  • With what speed must a ball be thrown vertically up in order to rise to a maximum height of 45m? And for how long will it be in
    13·1 answer
  • Which component of the galaxy is shown in this image? Dust
    7·1 answer
  • Which image illustrates the interaction of a light wave with a mirror?
    6·2 answers
  • . The average human walks at a speed of 5 km per hour. If your PE teacher asks you to walk for 30 minutes in
    9·1 answer
  • What is rising temperatures
    5·2 answers
  • I need help with my physics homework agh! Please help it's due tomorrow. <br>​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!