1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
3 years ago
6

What is net force? A. The fundamental forces B. The unified force C. The gravitational force D. The vector sum of the forces

Physics
2 answers:
avanturin [10]3 years ago
8 0
It is the vector sum of the forces
dedylja [7]3 years ago
7 0

Net force is the vector sum of the forces.

Answer: Option D

<u>Explanation:</u>

The net force can be referred as the sum total of all the forces exerted up on a body. The word net refers to the total, hence net force refers to the total force which exerted upon the object.

A force is related as the displacement experienced by an object due to external factors or interaction acting up on the object. Option A,B and C are irrelevant as they are separate forces exerted up on the object.

You might be interested in
Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.93 m. The density
Slav-nsk [51]

Answer:

Explanation:

Given: Density of blood = 1.03 × 10³ Kg/m³, Height =  1.93 m g = 9.8 m/s²

pressure at the brain is equal to atmospheric pressure. = Hydro-static

pressure(ρ₀)

∴ pressure of the foot = pressure of the brain(ρ₀) + ( density of blood × acceleration due to gravity × height)(ρgh)

Hydro-static pressure = pressure at the feet- pressure at the brain(ρ₀)

Hydro-static pressure (Δp) = (ρgh + ρ₀) - ρ₀ = ρgh

Hydro-static pressure = 1.03 × 10³ × 9.8 × 1.93 = 1.948 × 10⁴ Pa

∴  Hydro-static pressure ≈ 1.95 × 10⁴ Pa

3 0
2 years ago
So far, you’ve been working with an "ideal" pulley system. How do you think real pulley systems are different, and how would tha
almond37 [142]

Answer:

In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component

However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy

Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system

The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Efficiency \, \% = \dfrac{AMA}{IMA}  \times 100

Explanation:

8 0
3 years ago
The speed of light in a material is found to be 2.07 x 108 m/s. What is the most likely material from the options below if the s
Paraphin [41]

Answer:

1.3636

Explanation:

Write the expression for the refractive index.

n=c/v

c= speed of light in air

v= speed of light in material

=(3×10^8 m/s)/(2.2×10^8 m/s)

 =1.3636

4 0
3 years ago
Read 2 more answers
Radio waves just like light waves can be reflected refracted and diffracted and polarized.
hoa [83]
<span>Radio waves just like light waves can be reflected refracted and diffracted and polarized.  The answer is True. </span>These characteristics are the common phenomena for electromagnetic (EM)  waves, and Radio Waves are electromagnetic Waves so much so that they obey reflection, refraction, and diffraction. 
5 0
3 years ago
Read 2 more answers
How do you change the currents in a circuit
mel-nik [20]
-
Eddy Current Testing

Introduction
Basic Principles
History of ET
Present State of ET

The Physics
Properties of Electricity
Current Flow & Ohm's Law
Induction & Inductance
Self Inductance
Mutual Inductance
Circuits & Phase
Impedance
Depth & Current Density
Phase Lag

Instrumentation
Eddy Current Instruments
Resonant Circuits
Bridges
Impedance Plane
Display - Analog Meter

Probes (Coils)
Probes - Mode of Operation
Probes - Configuration
Probes - Shielding
Coil Design
Impedance Matching

Procedures Issues 
Reference Standards
Signal Filtering

Applications
Surface Breaking Cracks
SBC using Sliding Probes
Tube Inspection 
Conductivity 
Heat Treat Verification
Thickness of Thin Mat'ls
Thickness of Coatings

Advanced Techniques
Scanning
Multi-Frequency Tech.
Swept Frequency Tech.
Pulsed ET Tech.
Background Pulsed ET
Remote Field Tech.

Quizzes

Formulae& Tables
EC Standards & Methods
EC Material Properties
-






Current Flow and Ohm's Law

Ohm's law is the most important, basic law of electricity. It defines the relationship between the three fundamental electrical quantities: current, voltage, and resistance. When a voltage is applied to a circuit containing only resistive elements (i.e. no coils), current flows according to Ohm's Law, which is shown below.

I = V / R 

Where: 

I =

Electrical Current (Amperes)

V =

Voltage (Voltage)

R =

Resistance (Ohms)

    

Ohm's law states that the electrical current (I) flowing in an circuit is proportional to the voltage (V) and inversely proportional to the resistance (R). Therefore, if the voltage is increased, the current will increase provided the resistance of the circuit does not change. Similarly, increasing the resistance of the circuit will lower the current flow if the voltage is not changed. The formula can be reorganized so that the relationship can easily be seen for all of the three variables.

The Java applet below allows the user to vary each of these three parameters in Ohm's Law and see the effect on the other two parameters. Values may be input into the dialog boxes, or the resistance and voltage may also be varied by moving the arrows in the applet. Current and voltage are shown as they would be displayed on an oscilloscope with the X-axis being time and the Y-axis being the amplitude of the current or voltage. Ohm's Law is valid for both direct current (DC) and alternating current (AC). Note that in AC circuits consisting of purely resistive elements, the current and voltage are always in phase with each other.

Exercise: Use the interactive applet below to investigate the relationship of the variables in Ohm's law. Vary the voltage in the circuit by clicking and dragging the head of the arrow, which is marked with the V. The resistance in the circuit can be increased by dragging the arrow head under the variable resister, which is marked R. Please note that the vertical scale of the oscilloscope screen automatically adjusts to reflect the value of the current.

See what happens to the voltage and current as the resistance in the circuit is increased. What happens if there is not enough resistance in a circuit? If the resistance is increased, what must happen in order to maintain the same level of current flow?


4 0
3 years ago
Other questions:
  • What is the relationship between electric and magnetic fields?
    5·1 answer
  • A cell membrane consists of an inner and outer wall separated by a distance of approximately 10nm. Assume that the walls act lik
    15·1 answer
  • What provides the path for a circuit
    10·2 answers
  • Describe a device that transforms thermal energy into<br> another useful form.<br> tes that
    8·1 answer
  • When you drop a 0.42 kg apple, Earth exerts a force on it that accelerates it at 9.8 m/s 2 toward the earth’s surface. According
    6·2 answers
  • Studies have shown that viewing violent actions in the media __________ the inhibition against performing those actions, especia
    13·2 answers
  • The high-speed police chase ends at an intersection as a 2,150-kg Ford Explorer (driven by Robin) traveling south at 35 m/s coll
    12·1 answer
  • Which equation can correctly express the relation between force, acceleration, and mass?
    11·2 answers
  • Prove that Efficiency=MA/ VR x 100%
    9·1 answer
  • A crowbar is being used with an actual mechanical advantage of 8. If the input force is 400 Newton’s on the 0.3 meter long end o
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!