Answer:
Step-by-step explanation:
The attached diagram shows the triangle ABC formed by the ladder with the wall of the house.
Triangle ABC is a right angle triangle. It has a 90 degree angle. The length of the ladder forms the hypotenuse(AC)of the triangle. This length can be determined by applying Pythagoras theorem
Hypotenuse^2 = opposite ^2 + adjacent^2
AC^2 = 22^2 + 5^2
AC^2 = 484 + 25 = 509
AC = √509
AC = 22.56
The slope of the ladder is
(change in y)/(change in x)
Slope = 22/5 = 4.4
Answer:
D
Step-by-step explanation:
usually anything with 11 on the numerator is a repeating decimal and the 0.37 is closest to 36.
so by guessing you know is D
Answer:
D) 2/3 x - 8
E) -4x + 11
Step-by-step explanation:
y ∈ R | -∞ < y < ∞ just means that the range for y is all real numbers in a function. For y to be all real numbers, the function, when graphed, has to have no top or bottom limit. The only graphs without top or bottom limits are D and E.
A has a bottom limit
B has a bottom limit
C has a top limit
Let ∠RTS=∠RST = a (say)
∠QUA=∠QSU= b(say)
then we know , at point S, a+40+b=180. so, a+b=140 we'll use this later.
consider trianglePQR, ∠P+∠Q+∠R=180
i.e.P+(180-2b)+(180-2a)=180
P+180+180-2(a+b)=180 ⇒P+180-2(a+b)=0 ⇒P=2(140)- 180=280-180=100
hence,answer is E
For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46