Answer:
1.5m
Explanation:
Velocity=1500m/s
Frequency=1000hz
Wavelength =velocity ➗ frequency
wavelength =1500 ➗ 1000
Wavelength=1.5m
Answer:
400m
Explanation:
Brainliest? :))
Let your initial displacement from your home to the store be
Dd
>
1 and your displacement from the store to your friend’s house
be Dd
>
2.
Given: Dd
>
1 = 200 m [N]; Dd
>
2 = 600 m [S]
Required: Dd
>
T
Analysis: Dd
>
T 5 Dd
>
1 1 Dd
>
2
Solution: Figure 6 shows the given vectors, with the tip of Dd
>
1
joined to the tail of Dd
>
2. The resultant vector Dd
>
T is drawn in red,
from the tail of Dd
>
1 to the tip of Dd
>
2. The direction of Dd
>
T is [S].
Dd
>
T measures 4 cm in length in Figure 6, so using the scale of
1 cm : 100 m, the actual magnitude of Dd
>
T is 400 m.
Statement: Relative to your starting point at your home, your
total displacement is 400 m [S].
Answer:
I'm not completely sure, but I believe the first and third of the three are mechanical.
Explanation:
Chemical potential isn't moving or about to go into motion. It can't be mechanical.
Answer:
1) The speed of sound increases
2) 440 Hz
3) 29°C
4) 17°C
5) 434 Hz
6) 12 m/s
7) 17.3 m
Explanation:
1) The speed of sound increases
2) V = f×λ
f = V/λ = 343/0.78 = 439.744 ≈ 440 Hz
3) V = f×λ
512 × 0.68 = 348.16 m/s
348.16 - 331 = 17.16
T = 17.16/0.6 = 28.6 ≈ 29°C
4) Increase in speed = 350 - 340 = 10
Increase in temperature = 10/0.6 = 16.67° ≈ 17°C
5) f = V/λ = 343/0.79 = 434 Hz
6) 331 + 0.6×30 - (331 × 0.6 ×10) = 12 m/s
7) V = 331 + 0.6×25 = 346m/s
λ = 346/20 = 17.3 m
The correct graph is <u>D</u>.
The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.
The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.
The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.
The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.