Answer:
The magnitude of the magnetic field is 1.83 x
T.
Explanation:
The flow of an electric current in a straight wire induces magnetic field around the wire. When current is flowing through two wires in the same direction, a force of attraction exists between the wires. But if the current flows in opposite directions, the force of repulsion is felt by the wires.
In the given question, the direction of flow of current through the wires is opposite, thus both wires applies the same field on each other. The result to repulsion between them.
The magnetic field (B) between the given wires can be determined by:
B = 
where: I is the current, r is the distance between the wires and
is the magnetic field constant.
But, I = 11 A, r = 0.12 m and
= 4
x
Tm/A
So that;
B = 
= 1.8333 x 
B = 1.83 x
T
1) 
The capacitance of a parallel-plate capacitor is given by:

where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is

so the area is

While the separation between the plates is

So the capacitance is

And now we can find the energy stored,which is given by:

2) 0.71 J/m^3
The magnitude of the electric field is given by

and the energy density of the electric field is given by

and using
, we find

The magnitude of the force acting on the object lying on a flat surface without moving is 10 N.
The given parameters;
- magnitude of force on the object, F = 10 N
- angle between the object and the horizontal flat surface = 0⁰
Apply Newton's second law of motion to determine the magnitude of the force on the object.
Due to the position of the object, the magnitude of the force acting on it is calculated as;

Therefore, the magnitude of the force acting on the object is 10 N.
Learn more here: brainly.com/question/19887955
Answer:
Electric field is a function 1/r^2
Explanation: