1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dusya [7]
3 years ago
7

What material reduces thermal energy

Physics
1 answer:
expeople1 [14]3 years ago
3 0

Answer:

Insulation helps to prevent that transfer of heat.

You might be interested in
How fast must a bug swim to keep up with the waves it produces? How fast must it move to produce a bow wave?
Elden [556K]

Answer:

A bug must swim as fast as the wave speed to keep up with the waves it produces. Moreso, a boat must be moving faster than the waves it creates to produce a bow wave.

6 0
3 years ago
A seagull flying horizontally at 8.00m/s carries a clam with a mass of 300g in its beak. Calculate the total mechanical energy o
Stells [14]

Answer:

9.6J+88.2J=97.8J

Explanation:

Here the velocity of the seagull is given,mass is given and its height.

We have to find its mechanical energy my friend.

Mechanical energy=kinetic energy + potential energy.

First we will find kinetic energy.

For calculating kinetic energy we need mass and velocity,which are given here.

So, Ek=

1 \div 2mv {?}^{2}

So by substituting the values we get 9.6J.

Now we find the potential energy which is mgh.

By substituting the values we get 88.2J.

Then we add both of those and get 97.8J

I hope this satisfies you and make sure you contact me if it doesn't

7 0
3 years ago
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
Name one reason why you should pour milk in before cereal.
krok68 [10]

Answer:

splashing

Explanation:

if you put in the cereal after the milk it will splash everywhere, causing a waste of milk, and a loss of time.

5 0
3 years ago
Amazon rectangular bar of low carbon steel A-36 is exposed to an axial strees of 150 MPa. What is the original length of the bar
kolbaska11 [484]

Answer:

1.8m

Explanation:

Let the Elastics of the steel ASTM-36 E = 200000 MPa

The strain of the bar when subjected to 150 MPa is

\epsilon = \frac{\sigma}{E} = \frac{150}{200000} = 0.00075

Therefore, if the bar elongates by 1.35 mm, then the original length L would be:

\epsilon = \frac{\Delta L}{L}

L = \frac{\Delta L}{\epsilon} = \frac{1.35}{0.00075} = 1800 mm or 1.8m

5 0
3 years ago
Other questions:
  • (a) Calculate the magnitude of the gravitational force exerted by Mars on a 67 kg human standing on the surface of Mars. (The ma
    8·1 answer
  • How can a heavy moving van have the same momentum as a small motorcycle?
    8·1 answer
  • A baseball bat hits a baseball with a force of 100 newtons. What is the force and its direction exerted by the ball on the bat?
    7·1 answer
  • The attraction or repulsion of two objects is called blank force what is the blank
    6·1 answer
  • The kinetic energies of particles in a sample of matter are increasing. This sample is most likely
    15·1 answer
  • Two skaters skate toward each other, each moving at 3.3 m/s. Their lines of motion are separated by a perpendicular distance of
    14·1 answer
  • Which of electromagnetic radiation has the shortest wavelength?
    8·1 answer
  • One of your fellow students comes up to you and asks the following question, "If an object is not moving, can it be accelerating
    10·1 answer
  • Two forces P and Q act on an object of mass 7.00 kg with Q being the larger of the two forces. When both forces are directed to
    15·1 answer
  • Why will a struck tuning fork sound louder when it is held against a table?.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!