Compounds are formed as a result of elements that are joined and held together by strong forces called chemical bonds.
(a) This is a freefall problem in disguise - when the ball returns to its original position, it will be going at the same speed but in the opposite direction. So the ball's final velocity is the negative of its initial velocity.
Recall that

We have
, so that

(b) The speed of the ball at the start and at the end of the roll are the same 8 m/s, so the average speed is also 8 m/s.
(c) The ball's average velocity is 0. Average velocity is given by
, and we know that
.
(d) The position of the ball
at time
is given by

Take the starting position to be the origin,
. Then after 6 seconds,

so the ball is 42 m away from where it started.
We're not asked to say in which direction it's moving at this point, but just out of curiosity we can determine that too:

Since the velocity is positive, the ball is still moving up the incline.
Answer:
I would say there is friction against the floor, air resistance, and gravity.
Explanation:
The given question is incomplete. The complete question is as follows.
An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.
Explanation:
It is known that Boltzmann formula of entropy is as follows.
s = k ln W
where, k = Boltzmann constant
W = number of energetically equivalent possible microstates or configuration of the system
In the given case, W = 36. Now, we will put the given values into the above formula as follows.
s = k ln W
=
= 
Thus, we can conclude that the entropy of this system is
.