Answer:
Explanation:
Given
altitude of the Plane 
When Airplane is
away
Distance is changing at the rate of 
From diagram we can write as

differentiate above equation w.r.t time

as altitude is not changing therefore 

at 
substitute the value we get 

Answer: d. I or II
Explanation: A traveling wave has speed that depends on characteristics of a medium. Characteristics like linear density (μ), which is defined as mass per length.
Tension or Force (
) is also related to the speed of a moving wave.
The relationship between tension and linear density and speed is ginve by the formula:

So, for the traveling waves generated on a string fixed at both ends described above, ways to increase wave speed would be:
1) Increase Tension and maintaining mass and length constant;
2) Longer string will decrease linear density, which will increase wave speed, due to their inversely proportional relationship;
Then, ways to increase the wave speed is
I. Using the same string but increasing tension
II. Using a longer string with the same μ and T.
<span>Density is 3.4x10^18 kg/m^3
Dime weighs 1.5x10^12 pounds
The definition of density is simply mass per volume. So let's divide the mass of the neutron star by its volume. First, we need to determine the volume. Assuming the neutron star is a sphere, the volume will be 4/3 pi r^3, so
4/3 pi 1.9x10^3
= 4/3 pi 6.859x10^3 m^3
= 2.873x10^10 m^3
Now divide the mass by the volume
9.9x10^28 kg / 2.873x10^10 m^3 = 3.44588x10^18 kg/m^3
Since we only have 2 significant digits in our data, round to 2 significant digits, giving 3.4x10^18 kg/m^3
Now to figure out how much the dime weighs, just multiply by the volume of the dime.
3.4x10^18 kg/m^3 * 2.0x10^-7 m^3 = 6.8x10^11 kg
And to convert from kg to lbs, multiply by 2.20462, so
6.8x10^11 kg * 2.20462 lb/kg = 1.5x10^12 lb</span>
Answer:
A. Thickness and temperature
Explanation:
-- the applicant's previous experience at similar jobs;
-- the color of the applicant's hair;
-- the applicant's grammar and vocabulary;
-- where the applicant went to school;
-- the shirt the applicant wears to the job interview;
-- the applicant's favorite football team;
-- the applicant's self-confidence;