Pitch is the sensation of certain frequencies to the ear. High frequency = high pitch, low frequency = low pitch.
f = c(speed of the wave) / <span>λ (wavelength)
1. 343m/s / 0.77955m = 439.99 Hz
This corresponds to pitch A
2. 343m/s / 0.52028m = 659.26 Hz
</span> This corresponds to pitch E
<span>
3. 343m/s / 0.65552m = 523.349 Hz
</span>This corresponds to pitch C
4. using f = c / λ
λ = c / f<span>
= 343m/s / 587.33 = 0.583999 m = 0.584 m
</span>
Answer:
A) At point 1, local acceleration = 0.5 m/s²
At point 2, local acceleration = 1.0 m/s²
B) Average Eulerian convective acceleration over the two points in the cross section shown = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
Explanation:
Local acceleration at those points is the instantaneous acceleration at those points and it is given as
a = dv/dt
At point 1, v₁ = 0.5 t
a₁ =dv₁/dt = 0.5 m/s²
At point 2, v₂ = 1.0 t
a₂ = dv₂/dt = 1.0 m/s²
b) Average Eulerian convective acceleration over the two points in the cross section shown = (change of velocity between the two points)/time
Change of velocity between the two points = v₂ - v₁ = 1.0t - 0.5t = 0.5 t
Time = t
Average acceleration = 0.5t/t = 0.5 m/s²
This value is positive indicating an increase in velocity and acceleration kf the fluid as the cross sectional Area of flow reduces.
The tension has to hold the part of the weight in the direction of the string:
T = mg*cos(theta)
Theta=0, whole weight, theta=90, T=0, if the pendulum is horizontal, the string will be loose! Yeah
Answer:
Explanation:
Due to first charge , electric field at origin will be oriented towards - ve of y axis.
magnitude
Ey = -8.99 x 10⁹ x 4.1 x 10⁻⁹ / 1.08² j
= - 31.6 j N/C
Due to second charge electric field at origin
= 8.99 x 10⁹ x 3.6 x 10⁻⁹ / 1.2²+ .6²
= 8.99 x 10⁹ x 3.6 x 10⁻⁹ / 1.8
= 18 N/C
It is making angle θ where
Tanθ = .6 / 1.2
= 26.55°
this field in vector form
= - 18 cos 26.55 i - 18 sin26.55 j
= - 16.10 i - 8.04 j
Total field
= - 16.10 i - 8.04 j + ( - 31.6 j )
= -16.1 i - 39.64 j .
Ex = - 16.1 i
Ey = - 39.64 j .
Answer:

Explanation:
Using the tension in the spring and the force of the tension can by describe by
T = kx
, T = mg
Therefore:

With two springs, let, T1 be the tension in each spring, x1 be the extension of each spring. The spring constant of each spring is 2k so:


Solve to x1




