Answer:
Explanation:
At resonance ω₀L = 1 / ω₀C , L is inductance and C is capacitance .
C = 1 / ω₀²L , ω₀ = 5.1 x 10⁵ . ( given )
voltage over resistance = R I , R is resistance and I is current
voltage over inductance = Iω₀L
R I / Iω₀L = 60 / 40
R / ω₀L = 3 / 2
L = 2 R / 3 ω₀
= 2 x 121 / 3 x 5.1 x 10⁵
= 15.81 x 10⁻⁵
C = 1 / ω₀²L
= 1 / (5.1 x 10⁵)² x 15.81 x 10⁻⁵
= .002432 x 10⁻⁵
= 24.32 x 10⁻⁹ F
Let the angular frequency required be ω
Tan 45 = (ωL - 1 / ωC) / R
ωL - 1 / ωC = R
ω²LC - 1 = R ωC
ω²LC = 1 + R ωC
ω² x 15.81 x 10⁻⁵ x 24.32 x 10⁻⁹ = 1 + 121 x ω x 24.32 x 10⁻⁹
ω² x 384.5 x 10⁻¹⁴ = 1 + 2942.72 x10⁻⁹ω
ω² - 7.65 x 10⁶ ω - 1 = 0
ω = 7.65 x 10⁶
frequency = 7.65 x 10⁶ / 2π
= 1.22 x 10⁶ Hz
The energy converted is 48 Joules
<h3>How to determine the energy</h3>
We have the formula for energy in a circuit as
Energy = Power × time
Power = I^2 R
Current, I = 2.0 A
time = 1 minute
Resistance = 12 Ohm
Substitute into the formula
Power = 2 × 2 × 12
Power = 48 Watts
Energy = 48 × 1
Energy = 48 Joules
Thus, the energy converted is 48 Joules
Learn more about energy in a circuit here:
brainly.com/question/14950715
#SPJ1
More force to accelerate. If you push a car compared to a beach ball, which will you have to push harder for it to move? That's pretty much what the question is asking, if that helps any:)