1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
2 years ago
12

The inner cylinder of a long, cylindrical capacitor has radius r and linear charge density +λ. It is surrounded by a coaxial cyl

indrical conducting shell with inner radius r and linear charge density -λ. (a) What is the energy density in the region between the conductors at a distance r from the axis?b) Integrate the energy density calculated in part (a) over the volume between the conductors in a length L of the capacitor to obtain the total electric-field energy per unit length
Physics
1 answer:
Ulleksa [173]2 years ago
3 0

Hi there!

a)

We can begin by using the equation for energy density.

U = \frac{1}{2}\epsilon_0 E^2

U = Energy (J)

ε₀ = permittivity of free space

E = electric field (V/m)

First, derive the equation for the electric field using Gauss's Law:
\Phi _E = \oint E \cdot dA = \frac{Q_{encl}}{\epsilon_0}

Creating a Gaussian surface being the lateral surface area of a cylinder:
A = 2\pi rL\\\\E \cdot 2\pi rL = \frac{Q_{encl}}{\epsilon_0}\\\\Q = \lambda L\\\\E \cdot 2\pi rL = \frac{\lambda L}{\epsilon_0}\\\\E = \frac{\lambda }{2\pi r \epsilon_0}

Now, we can calculate the energy density using the equation:
U = \frac{1}{2} \epsilon_0 E^2

Plug in the expression for the electric field and solve.

U = \frac{1}{2}\epsilon_0 (\frac{\lambda}{2\pi r \epsilon_0})^2\\\\U = \frac{\lambda^2}{8\pi^2r^2\epsilon_0}

b)

Now, we can integrate over the volume with respect to the radius.

Recall:
V = \pi r^2L \\\\dV = 2\pi rLdr

Now, we can take the integral of the above expression. Let:
r_i = inner cylinder radius

r_o = outer cylindrical shell inner radius

Total energy-field energy:

U = \int\limits^{r_o}_{r_i} {U_D} \, dV =   \int\limits^{r_o}_{r_i} {2\pi rL *U_D} \, dr

Plug in the equation for the electric field energy density and solve.

U =   \int\limits^{r_o}_{r_i} {2\pi rL *\frac{\lambda^2}{8\pi^2r^2\epsilon_0}} \, dr\\\\U = \int\limits^{r_o}_{r_i} { L *\frac{\lambda^2}{4\pi r\epsilon_0}} \, dr\\

Bring constants in front and integrate. Recall the following integration rule:
\int {\frac{1}{x}} \, dx  = ln(x) + C

Now, we can solve!

U = \frac{\lambda^2 L}{4\pi \epsilon_0}\int\limits^{r_o}_{r_i} { \frac{1}{r}} \, dr\\\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(r)\left \| {{r_o} \atop {r_i}} \right. \\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} (ln(r_o) - ln(r_i))\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})

To find the total electric field energy per unit length, we can simply divide by the length, 'L'.

\frac{U}{L} = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})\frac{1}{L} \\\\\frac{U}{L} = \boxed{\frac{\lambda^2 }{4\pi \epsilon_0} ln(\frac{r_o}{r_i})}

And here's our equation!

You might be interested in
A metal detector used in airports is actually a large coil of wire carrying a small current. Explain how it detects a gun, even
Alexus [3.1K]

<u>Metal detectors work by transmitting an electromagnetic field from the search coil into the ground. Any metal objects (targets) within the electromagnetic field will become energised and retransmit an electromagnetic field of their own. The detector’s search coil receives the retransmitted field and alerts the user by producing a target response. metal detectors are capable of discriminating between different target types and can be set to ignore unwanted targets. </u>

1. Search Coil

The detector’s search coil transmits the electromagnetic field into the ground and receives the return electromagnetic field from a target.

2. Transmit Electromagnetic Field (visual representation only - blue)

The transmit electromagnetic field energises targets to enable them to be detected.

3. Target

A target is any metal object that can be detected by a metal detector. In this example, the detected target is treasure, which is a good (accepted) target.

<em>hope this helps PLEASE MARK AS BRAINLIEST:)</em>

8 0
3 years ago
How can Climate Change impact the formation of Hurricanes?
Orlov [11]
Climate change may affect tropical cyclones in a variety of ways: an intensification of rainfall and wind speed, a decrease in overall frequency, an increase in frequency of very intense storms and a poleward extension of where the cyclones reach maximum intensity are among the possible consequences
4 0
3 years ago
Read 2 more answers
A 55.0-kg box rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.300. What h
MariettaO [177]

Answer:

161.86 N

Explanation:

mass of box m= 55.0 kg

weight of the box, mg= 55×9.81

g here is acceleration due to gravity =9.81 m/sec^2

coefficient of friction between the box and the surface μ= 0.3

the friction force F_s= μmg= 0.3×55×9.81

=161.86 N

to move the ball horizontal force required is 161.86 N

8 0
3 years ago
675 km equals how much cm ?
irga5000 [103]
KHDMDCM.
Now go from Kilometer to Centimeter: 5.
Move the decimal 5 places to the right: 67,500,000 centimeters.
Hope this helps :)
7 0
3 years ago
A student heats a piece of aluminum, with specific heat 0.900 J/gºC, in
tankabanditka [31]

Answer:

my bad i need points good luck

Explanation:

adawd

8 0
3 years ago
Other questions:
  • What effect does time have on the speed of a moving object
    5·1 answer
  • Think of a skateboarder riding down a hill. Once the skateboarder reaches the bottom of the hill, if she does not manually add m
    9·2 answers
  • Think back to the example in the Warm-Up: A business owner wants to open a restaurant, but many residents do not want a business
    7·1 answer
  • The radiator of a car is a type of heat exchanger. Hot fluid coming from the car engine, called the coolant, flows through alumi
    10·1 answer
  • Which of the following solutions will have the lowest freezing point?
    6·1 answer
  • A train station bell gives off a fundamental tone of 500 Hz as the train approaches the station at a speed of 30.0 m/s. If the s
    15·1 answer
  • What is the scientific definition of energy that relates it to work
    9·2 answers
  • How do different factors affect solubility? Check all of the boxes that apply.
    8·2 answers
  • Please helpp!! Questions 1-5
    7·1 answer
  • True or False. Only the initial ball carrier<br><br> can recover a fumble.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!