1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shusha [124]
2 years ago
12

The inner cylinder of a long, cylindrical capacitor has radius r and linear charge density +λ. It is surrounded by a coaxial cyl

indrical conducting shell with inner radius r and linear charge density -λ. (a) What is the energy density in the region between the conductors at a distance r from the axis?b) Integrate the energy density calculated in part (a) over the volume between the conductors in a length L of the capacitor to obtain the total electric-field energy per unit length
Physics
1 answer:
Ulleksa [173]2 years ago
3 0

Hi there!

a)

We can begin by using the equation for energy density.

U = \frac{1}{2}\epsilon_0 E^2

U = Energy (J)

ε₀ = permittivity of free space

E = electric field (V/m)

First, derive the equation for the electric field using Gauss's Law:
\Phi _E = \oint E \cdot dA = \frac{Q_{encl}}{\epsilon_0}

Creating a Gaussian surface being the lateral surface area of a cylinder:
A = 2\pi rL\\\\E \cdot 2\pi rL = \frac{Q_{encl}}{\epsilon_0}\\\\Q = \lambda L\\\\E \cdot 2\pi rL = \frac{\lambda L}{\epsilon_0}\\\\E = \frac{\lambda }{2\pi r \epsilon_0}

Now, we can calculate the energy density using the equation:
U = \frac{1}{2} \epsilon_0 E^2

Plug in the expression for the electric field and solve.

U = \frac{1}{2}\epsilon_0 (\frac{\lambda}{2\pi r \epsilon_0})^2\\\\U = \frac{\lambda^2}{8\pi^2r^2\epsilon_0}

b)

Now, we can integrate over the volume with respect to the radius.

Recall:
V = \pi r^2L \\\\dV = 2\pi rLdr

Now, we can take the integral of the above expression. Let:
r_i = inner cylinder radius

r_o = outer cylindrical shell inner radius

Total energy-field energy:

U = \int\limits^{r_o}_{r_i} {U_D} \, dV =   \int\limits^{r_o}_{r_i} {2\pi rL *U_D} \, dr

Plug in the equation for the electric field energy density and solve.

U =   \int\limits^{r_o}_{r_i} {2\pi rL *\frac{\lambda^2}{8\pi^2r^2\epsilon_0}} \, dr\\\\U = \int\limits^{r_o}_{r_i} { L *\frac{\lambda^2}{4\pi r\epsilon_0}} \, dr\\

Bring constants in front and integrate. Recall the following integration rule:
\int {\frac{1}{x}} \, dx  = ln(x) + C

Now, we can solve!

U = \frac{\lambda^2 L}{4\pi \epsilon_0}\int\limits^{r_o}_{r_i} { \frac{1}{r}} \, dr\\\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(r)\left \| {{r_o} \atop {r_i}} \right. \\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} (ln(r_o) - ln(r_i))\\\\U = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})

To find the total electric field energy per unit length, we can simply divide by the length, 'L'.

\frac{U}{L} = \frac{\lambda^2 L}{4\pi \epsilon_0} ln(\frac{r_o}{r_i})\frac{1}{L} \\\\\frac{U}{L} = \boxed{\frac{\lambda^2 }{4\pi \epsilon_0} ln(\frac{r_o}{r_i})}

And here's our equation!

You might be interested in
Two dogs are pulling on a chew toy. One dog pulls the chew toy with 64 N [E] and
PIT_PIT [208]

Answer:

Eastward, at 11 m/s^2

Explanation:

64N-31N=unbalanced force of 33N

F=ma

33N=(3kg)a

a=11m/s^2 to the East

3 0
2 years ago
A magnet contains a ____ numbers of magnetic domains
mylen [45]
A magnet contains billions of aligned atoms known as magnetic domains
6 0
3 years ago
Read 2 more answers
Imagine a ringing bell set inside a sealed glass jar. Once all the air is removed and a vacuum is crated, the ringing sound is n
kenny6666 [7]

working...

Sound wave needs medium to travel

as energy which travels in this wave is because of transfer from one particle to another particle

If there is no medium then energy can not be transferred and sound wave will not travel

so in vacuum we can not listen sound

similarly here air is removed it means there is no medium inside the jar to travel the sound and hence we can not hear it

Option B is correct

Without air, the sound waves cannot travel to the ear.

5 0
3 years ago
How long do elephants live?
ANTONII [103]
65 years but anything can happen to them
I’m not really sure but I hope this helps
5 0
3 years ago
Read 2 more answers
Which statement is true about gravitational forces?
Readme [11.4K]
Hey there!

Your correct answer would be (<span>Every mass exerts a gravitational force on every other mass.) It really doesn't matter the size in mass what so ever, gravity is stronger than mass, mass in nothing compared to mass. Therefor, gravity exert's mass on any object with any size of mass.

Your correct answer would be . . . 

</span>\boxed{\boxed{Every \ mass \ exerts \ a \ gravitational \ force \ on \ every \ other \ mass}}
<span>
Hope this helps.
~Jurgen
</span>
6 0
3 years ago
Read 2 more answers
Other questions:
  • A bicyclist of mass 112 kg rides in a circle at a speed of 8.9 m/s. If the radius of the circle is 15.5 m, what is the centripet
    5·2 answers
  • A rigid tank having a volume of 0.100 m3 contains helium gas at 150 atm. how many balloons can be inflated by opening the valve
    13·1 answer
  • Two soccer players, mary and jane, begin running from approximately the same point at the same time. mary runs in an easterly di
    6·1 answer
  • 1) How is chemical energy<br> transformed into potential<br> energy?
    9·1 answer
  • Elements have the same number of __as you move from left to right
    11·1 answer
  • What are the two distinct ways in which energy moves outward from the solar core to photosphere?
    12·1 answer
  • Any 3 differences between telescope and microscope
    6·1 answer
  • What is most likely to result immediately after a rainforest in Brazil is clear-cut?secondary succession
    15·2 answers
  • Can I have the answer please
    7·1 answer
  • A kayak took 5 hours to finish its trip on a river. If it traveled at an
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!