Answer:
9.75 x 10^4 J
Explanation:
Work done, W = 9.75 x 10^4 J
According to the work energy theorem, the change in kinetic energy is equal to the work done by all the forces.
So, here work done is 9.75 x 10^4 J so the change in kinetic energy is 9.75 x 10^4 J.
Answer:the Forces cancel out each other
Explanation:the forces cancel out each other
Answer:
we could use the formula, v=u+at,
65=25+a (10), a=4 , since the motion is declerating we have a=-4 m/s2
8a2-10ab+15b+10 Explaintion:
Alkali metals: left column of your periodic table (not hydrogen, but anything below it). They have one valence electron, which they are happy to share in a reaction.
Halogens: second column from the right of your periodic table. They are one electron short of a full shell, so they are reactive in the opposite way that alkalis are--they want electrons.
Atomic number (number of protons) is the big number on the periodic table square. Hydrogen's is 1.
Atomic mass is a little number down below. For example, Hydrogen's is 1.008.
Neutrons are a tricky subject, because different isotopes of the same element can have different numbers of neutrons. You can't generally get this from the atomic mass, because the atomic mass is a weighted average of naturally occurring isotopes. Hydrogen can have 0,1, or 2 neutrons. To answer this, you'd have to choose a particular isotope from the table of isotopes (a completely different chart from the periodic table) which has a certain number of neutrons: n = weight - Z.
Valence electrons are the electrons in the outermost shell. (The column of the table).
<span>
Number of principal shells is the row of the periodic table. </span>