1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Neporo4naja [7]
3 years ago
6

Professor Whitney has a sample of lead and a sample of iron. The samples have equal mass. When Whitney heats the samples, the le

ad reaches a higher temperature than the iron, even though both samples absorbed the same amount of thermal energy. What can Whitney conclude from this experiment?
Physics
1 answer:
xenn [34]3 years ago
8 0
The temperature increase of a substance is T=Q/m*c, where m is the mass, Q is the energy absorbed and c is the specific heat.  So you can conclude that if the lead gets to a higher temperature, it must have a lower specific heat
You might be interested in
What can I do to increase range of motion in a joint
Phantasy [73]

Answer:

Damian here! (ノ◕ヮ◕)ノ*:・゚✧

Stretching is used to improve range-of-motion (ROM) of a joint, but why? The most common reason is that the joint ROM is limited and is somehow affecting performance of a desired activity. Stretching is also used as a preventative measure.

Explanation:hope this helps? :))

8 0
3 years ago
the apparent weight of a body wholly immersed in water is 32N and its weight in 96N and calculate volume of the body
ArbitrLikvidat [17]

Answer:

0.0065 m³

Explanation:

Apparent weight = weight − buoyancy

32 N = 96 N − (1000 kg/m³) (9.8 m/s²) V

V = 0.0065 m³

3 0
3 years ago
A 124-kg balloon carrying a 22-kg basket is descending with a constant downward velocity of 20.0 m/ s. A I.O-kg stone is thrown
nadya68 [22]

(a) 296.6 m

The motion of the stone is the motion of a projectile, thrown with a horizontal speed of

v_x = 15.0 m/s

and with an initial vertical velocity of

v_{y0} = -20.0 m/s

where we have put a negative sign to indicate that the direction is downward.

The vertical position of the stone at time t is given by

y(t) = h + v_{0y} t + \frac{1}{2}gt^2 (1)

where

h is the initial height

g = -9.81 m/s^2 is the acceleration due to gravity

The stone hits the ground after a time t = 6.00 s, so at this time the vertical position is zero:

y(6.00 s) = 0

Substituting into eq.(1), we can solve to find the initial height of the stone, h:

0 = h + v_{0y} y + \frac{1}{2}gt^2\\h = -v_{0y} y - \frac{1}{2}gt^2=-(-20.0 m/s)(6.00 s) - \frac{1}{2}(9.81 m/s^2)(6.00 s)^2=296.6 m

(b) 176.6 m

The balloon is moving downward with a constant vertical speed of

v_y = -20 m/s

So the vertical position of the balloon after a time t is

y(t) = h + v_y t

and substituting t = 6.0 s and h = 296.6 m, we find the height of the balloon when the rock hits the ground:

y(t) = 296.6 m + (-20.0 m)(6.00 s)=176.6 m

(c) 198.2 m

In order to find how far is the rock from the balloon when it hits the ground, we need to find the horizontal distance covered by the rock during the time of the fall.

The horizontal speed of the rock is

v_x = 15.0 m/s

So the horizontal distance travelled in t = 6.00 s is

d_x = v_x t = (15.0 m/s)(6.00 s)=90 m

Considering also that the vertical height of the balloon after t=6.00 s is

d_y = 176.6 m

The distance between the balloon and the rock can be found by using Pythagorean theorem:

d=\sqrt{(90 m)^2+(176.6 m)^2}=198.2 m

(di) 15.0 m/s, -58.8 m/s

For an observer at rest in the basket, the rock is moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer at rest in the basket is

v_y (t) = gt

Substituting time t=6.00 s, we find

v_y = (-9.8 m/s)(6.00 s)=-58.8 m/s

(dii) 15.0 m/s, -78.8 m/s

For an observer at rest on the ground, the rock is still moving horizontally with a velocity of

v_x = 15.0 m/s

Instead, the vertical velocity of the rock for an observer on the ground is now given by

v_y (t) = v_{0y} + gt

Substituting time t=6.00 s, we find

v_y = (-20.0 m/s)+(-9.8 m/s)(6.00 s)=-78.8 m/s

6 0
3 years ago
How long will it take to go 150 km [E] traveling at 50 km/hr?
pantera1 [17]
It will take 3 hours
7 0
4 years ago
Read 2 more answers
irius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Ano
Norma-Jean [14]

The actual distance of Regulus from Earth is 23.81 parsecs.

Given:

Parallax of Regulus, p = 0.042 arc seconds

Calculation:

When an observer changes their position, an apparent change in the object's position takes place. This change can be calculated using the angle ( or semi-angle) made by the observer and object i.e. the angle made between the two lines of observation from the object to the observer.

Thus from the relation of parallax of a celestial body we get:

S = 1/ tan p ≈ 1 / p

where S is the actual distance between the object and the observer

            p is the parallax angle observed

Here for Regulus, we get:

S = 1 / p

  = 1 / (0.042)                                     [ 1 parsecs = 1 arcseconds ]

  = 23.81 parsecs

We know that,

1 parsecs = 3.26 light-years = 206,000 AU

Converting the actual distance into light years we get:

23.81 parsecs = 23.81 × (3.26 light yrs) = 77.658 light-years

Therefore, the actual distance of Regulus from Earth is 23.81 parsecs which is 77.658 in light years.

Learn more about astronomical units here:

<u>brainly.com/question/16471213</u>

#SPJ4

6 0
2 years ago
Other questions:
  • A plant species has two possible gene variations for seed shape. One plant has smooth seeds, and another has wrinkled seeds. The
    7·2 answers
  • Is any1 able to solve this?
    12·1 answer
  • An ice skater is spinning at 5.2 rev/s and has a moment of inertia of 0.32 kg * m2.
    7·1 answer
  • How much current is in a circuit that includes a 9.0-volt battery and a bulb with a resistance of 4.0 ohms? A. 0.44 amps B. 36 a
    10·1 answer
  • Make vector A on the simulation have a magnitude of exactly 10 units. What were the starting points and ending points of your ve
    6·1 answer
  • A ball was dropped and had a mass of .2 kg and was falling with a force of 2 N, what was its acceleration?
    13·1 answer
  • A 4n force is applied to an object with a mass of 2kg what is the accelertion of the object
    6·1 answer
  • What would happen if the louisiana purchase did not double the United States?
    13·1 answer
  • Please help, and give an explanation on what you did. Thanks a lot :]​
    13·1 answer
  • Buckingham and Clifton say most organizations are built on two flawed assumptions, which are
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!