<u>The two ways to find acceleration in non uniform motion are as follows:</u>
<u>Explanation:</u>
Non-uniform acceleration comprises the most common description of motion. Acceleration refers to the rate of changes of velocity per unit time. Basically, it implies that acceleration changes during motion. This variety can be communicated either as far as position (x) or time (t).
Accordingly, non-uniform acceleration motion can be carried out in 2 ways:
Calculus analysis is general and accurate, but limited to the availability of speed and acceleration expressions. It is not always possible to get the expression of motion attributes in the form "x" or "t". On the other hand, the graphic method is not accurate enough, but it can be used accurately if the graphic has the correct shapes.
The use of calculations involves differentiation and integration. Integration enables evaluation of the expression of acceleration of speed and expression of movement at a distance. Similarly, differentiation allows us to evaluate expression of speed position and expression speed to acceleration.
Answer:
It's C because if you were trying to put it at rest that means you would put it on a Balanced surfest
Answer: 90 km/hr
Explanation:
Speed= distance divided by time
540/6
= 90km/hr
Answer:
The magnitude of the change in momentum of the stone is 5.51kg*m/s.
Explanation:
the final kinetic energy = 1/2(0.15)v^2
1/2(0.15)v^2 = 70%*1/2(0.15)(20)^2
v^2 = 21/0.075
v^2 = 280
v = 16.73 m.s
if u is the initial speed and v is the final speed, then:
u = 20 m/s and v = - 16.73m/s
change in momentum = m(v-u)
= 0.15(- 16.73-20)
= -5.51 kg*m.s
Therefore, The magnitude of the change in momentum of the stone is 5.51kg*m/s.
The effect was the decision that gave congress power under the necessary and proper clause act. States could also not impede on the valid constitutional excerpts powered by the Federal Government.