Answer:The citric acid cycle is the final common pathway for the aerobic oxidation of fuel molecules. Moreover, as we will see shortly (Section 17.3) and repeatedly elsewhere in our study of biochemistry, the cycle is an important source of building blocks for a host of important biomolecules. As befits its role as the metabolic hub of the cell, entry into the cycle and the rate of the cycle itself are controlled at several stages.
Explanation:
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C + O₂ → 2CO₂
[Given] 0.25 moles O₂
[Solve] moles CO₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol O₂ → 2 mol CO₂
<u>Step 3: Stoichiometry</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

awnser : 6.02×1023 molcules
Fire is actually a chemical reaction. It's an oxidation reaction to be specific. When wood gets hot enough (the part of the wood that is burning) the large hydrocarbons break down to charred solids and a gas. The gas is what reacts with oxygen in the atmosphere to produced light, CO2 and H2O.
Answer:
radiation
Explanation:
radiation is the transfer of heat energy through space by electromagnetic radiation