Answer:

Explanation:
We could use the following suvat equation:

where
s is the vertical displacement of the coin
v is its final velocity, when it hits the water
t is the time
g is the acceleration of gravity
Taking upward as positive direction, in this problem we have:
s = -1.2 m

And the coin reaches the water when
t = 1.3 s
Substituting these data, we can find v:

where the negative sign means the direction is downward.
a₀). You know ...
-- the object is dropped from 5 meters
above the pavement;
-- it falls for 0.83 second.
a₁). Without being told, you assume ...
-- there is no air anyplace where the marshmallow travels,
so it free-falls, with no air resistance;
-- the event is happening on Earth,
where the acceleration of gravity is 9.81 m/s² .
b). You need to find how much LESS than 5 meters
the marshmallow falls in 0.83 second.
c). You can use whatever equations you like.
I'm going to use the equation for the distance an object falls in
' T ' seconds, in a place where the acceleration of gravity is ' G '.
d). To see how this all goes together for the solution, keep reading:
The distance that an object falls in ' T ' seconds
when it's dropped from rest is
(1/2 G) x (T²) .
On Earth, ' G ' is roughly 9.81 m/s², so in 0.83 seconds,
such an object would fall
(9.81 / 2) x (0.83)² = 3.38 meters .
It dropped from 5 meters above the pavement, but it
only fell 3.38 meters before something stopped it.
So it must have hit something that was
(5.00 - 3.38) = 1.62 meters
above the pavement. That's where the head of the unsuspecting
person was as he innocently walked by and got clobbered.
1. New moon
This is because the moon comes between the Earth and sun and this is only possible during its new moon phase.
2. Full moon
This is because the Earth comes between the Moon and the sun and the effect is only visible when there is a full moon.
3. Corona
The corona is the outer layer and is the only one visible when there is an eclipse.
Answer:

Explanation:
A parallel-plate capacitors consist of two parallel plates charged with opposite charge.
Since the distance between the plates (1 cm) is very small compared to the side of the plates (19 cm), we can consider these two plates as two infinite sheets of charge.
The electric field between two infinite sheets with opposite charge is:

where
is the surface charge density, where
Q is the charge on the plate
A is the area of the plate
is the vacuum permittivity
In this problem:
- The side of one plate is
L = 19 cm = 0.19 m
So the area is

Here we want to find the maximum charge that can be stored on the plates such that the value of the electric field does not overcome:

Substituting this value into the previous formula and re-arranging it for Q, we find the charge:
