Answer:
1.a) 1 kJ
1.b) 4 kJ
ratio 1:4
1.c) 4 times as before
2.a) 3.33 m/s2
Explanation:
1.a) bicycle's velocity =Displacement/time
=100/20 m/s
=5 m/s
bicycler's KE =1/2 *mass*(velocity)^2
=1/2*80*5^2
=1000 J = 1 kJ
1.b) bicycle's new velocity =200/20 m/s
=10 m/s
bicycler's new KE =1/2*80*10^2
=4000 J = 4 kJ
Ratio= KE 1 :KE new
= 1 :4
1.c) when bicycler's speed was doubled it increased the KE by 4 times (2^2). because In KE we consider the square of the speed , so the factor we increase the speed , the KE will get increased with the square value of it
ex : speed is triple the prior value , then the KE is as 3^2 times as before. that is 9 times
2.a) car acceleration = (20-0)/6 m/s2
= 3.33 m/s2
Answer: American sports culture has a much greater appreciation of and emphasis towards collegiate and high school sports. This may be the strongest difference between American sports culture and every other countries' sports culture.
I suppose right answer is d because staellite means an object that move around the larger object and Jupiter also moves around the Sun
Answer:
It can be said to be reliable although it is not valid
Explanation:
This is because Reliability means an indicator of consistency, A measure should produce similar or the same results consistently if it measures the same quantity. So does the thermometer measures over 5days but it is not valid because it deviates from the real value
In exothermic reactions, heat and light are released to the surrounding environment. On the other hand, in an endothermic reaction, heat is required and therefore it can be considered as a reactant.
- In exothermic reactions, light and heat are released into the environment (Option D).
- Exothermic reactions release energy in the form of heat or light.
- Combustion reactions are generally exothermic reactions.
- After an exothermic reaction takes place it is possible to observe that the energy of the products of the reaction is lesser than the energy of the reactants.
- The energy released in exothermic reactions is evidenced by the increase in temperature of the reaction.
Learn more in: