Answer:
[N2] = 0.3633M
[H2] = 1.090M
[NH3] = 0.2734M
Explanation:
Based on the reaction of the problem, Kc is defined as:
Kc = 0.159 = [NH3]² / [N2] [H2]³
<em>Where [] are the equilibrium concentrations.</em>
The initial concentrations of the reactants is:
N2 = 1.00mol / 2.00L = 0.500M
H2 = 3.00mol / 2.00L = 1.50M
When the equilibrium is reached, the concentrations are:
[N2] = 0.500M - X
[H2] = 1.50M - 3X
[NH3] = 2X
<em>Where X is reaction quotient</em>
Replacing in the Kc equation:
0.159 = [2X]² / [0.500 - X] [1.50 - 3X]³
0.159 = 4X² / 1.6875 - 13.5 X + 40.5 X² - 54 X³ + 27 X⁴
0.268313 - 2.1465 X + 6.4395 X² - 8.586 X³ + 4.293 X⁴ = 4X²
0.268313 - 2.1465 X + 2.4395 X² - 8.586 X³ + 4.293 X⁴ = 0
Solving for X:
X = 0.1367. Right solution.
X = 1.8286. False solution. Produce negative concentrations
Replacing:
[N2] = 0.500M - 0.1367M
[H2] = 1.50M - 3*0.1367M
[NH3] = 2*0.1367M
The equilibrium concentrations are:
<h3>[N2] = 0.3633M</h3><h3>[H2] = 1.090M</h3><h3>[NH3] = 0.2734M</h3>
Answer:
41.3 s
Explanation:
Let t₁ represent the time taken for SO₂ to effuse.
Let t₂ represent the time taken for Ar to effuse.
Let M₁ represent the molar mass of SO₂
Let M₂ represent the molar mass of Ar
From the question given above,
Time taken (t₁) for SO₂ = 52.3 s
Time taken (t₂) for Ar =?
Molar mass (M₁) of SO₂ = 32 + (16×2) = 32 + 32 = 64 g/mol
Molar mass (M₂) of Ar = 40 g/mol
Finally, we shall determine the time taken for Ar to effuse by using the Graham's law equation as shown below:
t₂ / t₁ = √(M₂ / M₁)
t₂ / 52.3 = √(40 / 64)
t₂ / 52.3 = √0.625
t₂ / 52.3 = 0.79
Cross multiply
t₂ = 52.3 × 0.79
t₂ = 41.3 s
Thus, the time taken for the amount of Ar to effuse is 41.3 s
Answer:
oh it's easy
Explanation:
Take the hydrate
N
a
2
S
2
O
3
∙
5
H
2
O
. Are there ionic forces between the
N
a
+
and the
S
2
O
2
−
3
and ion-dipole forces between the cation/anions and the water?
Answer:
it can affect things by drastically chagning the way that organisms opareate such as the eco systems, the health of the land the flood or drought is on and etc.
Explanation:
hope this helps!
Wait a second shoudl YOU do this one cause this is more of a YOU how am i suppose to know who you like?
i could give you a scientist just try albert Einstein