The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
The Sun is the major source of energy for organisms and the ecosystems of which they are a part. Producers such as plants, algae, and cyanobacteria use the energy from sunlight to make organic matter from carbon dioxide and water. This establishes the beginning of energy flow through almost all food webs.
Answer:
Please find attached the completed Lewis dot diagram structure for PI₂F
Explanation:
The number of valence electrons are;
Phosphorus = 5 Electrons
Iodine = 2 × 7 electrons = 14 electrons
Chlorine = 7 electrons
The total number of valence electrons = 14 + 7 + 5 = 26 electrons
2) We draw the symbol that represents the basic (general) structure of the molecule as follows;
The sheared electron pair are represented by single bond lines
3) We complete the octet structures round the fluorine and the iodine atoms as attached showing 18 electrons plus 6 shared electron pairs, with a maximum from step 2 to give a total of (18 + 6) 24 electron pairs
4) We add the 2 unaccounted valence electron on the phosphorus atom to give it the stable octet structure, which gives the completed Lewis structure
Answer:
Small-scale convection currents arise from uneven heating on a smaller scale. This kind of heating occurs along a coast and in the mountains. Small-scale convection currents cause local winds. Local winds blow over a much smaller area and change direction and speed over a shorter period of time than global winds.
Maybe that will help you answer the question.