Answer: 20.2 m/s
Explanation:
From the question above, we have the following data;
M1 = 800kg
M2 = 1200kg
V1 = 13m/s
V2 = 25m/s
U (common velocity) =?
M1V1 + M2V2 = (M1 + M2). U
(800*13) + (1200*25) = (800+1200) * U
10400 + 30000 = 2000u
40400 = 2000u
U = 40400 / 2000
U = 20.2 m/s
Explanation:
The compass needle moved when the wire was connected to the battery. The important point here is that the needle is affected by the wire only when both ends of the wire are connected to the battery because only at this time is current flowing through the circuit.
Answer:
I = M R^2 is the moment of inertia about a point that is a distance R from the center of mass (uniform distributed mass).
The moment of inertia about the center of a sphere is 2 / 5 M R^2.
By the parallel axis theorem the moment of inertia about a point on the rim of the sphere is I = 2/5 M R^2 + M R^2 = 7/5 M R^2
I = 7/5 * 20 kg * .2^2 m = 1.12 kg m^2