Answer:
x = 1.26 sin 3.16 t
Explanation:
Assume that the general equation of the displacement given as
x = A sinω t
A=Amplitude ,t=time ,ω=natural frequency
We know that speed V
V= A ω cosωt
Maximum velocity
V(max)= Aω
Given that F= 32 N
F = K Δ
K=Spring constant
Δ = 0.4 m
32 =0.4 K
K = 80 N/m
We know that ω²m = K
8 ω² = 80
ω = 3.16 s⁻¹
Given that V(max)= Aω = 4 m/s
3.16 A = 4
A= 1.26 m
Therefore the general equation of displacement
x = 1.26 sin 3.16 t
Yes. Power will decrease.
'cause Power = Work / time
So, power is indirectly proportional to time so, when one increases other would decrease
Hope this helps!
Answer:
20.96 h
Explanation:
The perimeter of the track is 2*pi*r = 20pi miles
In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.
From here, we can express the distance of A from X like this:
xa = 3t
And the distance of B would be:
xb = 20pi - 20 - 2t
The time t where they would passed each other and put 12 miles between them would be the one where xa - xb is equal to 12:
xa - xb = 12
3t - (20pi - 20 - 2t) = 12
5t = 20 pi - 8
t = (20pi - 8)/5 = 10.96 h
Remember to add this value to the 10 hours car B had already been racing:
t = 20.96h
Answer: An organ pipe is open at both ends. It is producing sound at its third harmonic, the frequency of which is 262 Hz. The speed of sound is 343 m/s. What is the length of the pipe?
Explanation: thanks for asking
This number has 3 sig figs.