The best answer would be the 4th choice. "They help scientists explain concepts that are difficult to observe, this also covers the first answer which helps the scientist to answer complex questions. A scientific model is not used prove scientific laws as they may not always have all the data to prove so, instead it is used to allow them to explain better concepts revolving around science through research and may also allow them to predict results based on the accumulation of data and analyzing the trend of this resulting information.
Answer:
W=1705.2 J
Explanation:
Given that
mass ,m= 60 kg
Acceleration due to gravity ,g= 9.8 m/s²
Height ,h= 2.9 m
As we know that work done by a force given as
W = F . d
F=force
d=Displacement
W=work done by force
Now by putting the values
F= m g (Acting downward )
d= h (Upward)
W= m g h ( work done against the force)
W= 60 x 9.8 x 2.9 J
W=1705.2 J
Therefore the answer will be 1705.2 J.
Answer:
The smallest part of a millimeter that can be read with a digital caliper with a four digit display is 0.02mm. Thus, it has to be converted to centimetre. So, divide by 10, we then have 0.02/10= *0.002cm* not mm.
Answer:
65.87 s
Explanation:
For the first time,
Applying
v² = u²+2as.............. Equation 1
Where v = final velocity, u = initial velocity, a = acceleration, s = distance
From the question,
Given: u = 0 m/s (from rest), a = 1.99 m/s², s = 60 m
Substitute these values into equation 1
v² = 0²+2(1.99)(60)
v² = 238.8
v = √238.8
v = 15.45 m/s
Therefore, time taken for the first 60 m is
t = (v-u)/a............ Equation 2
t = (15.45-0)/1.99
t = 7.77 s
For the final 40 meter,
t = (v-u)/a
Given: v = 0 m/s(decelerates), u = 15.45 m/s, a = -0.266 m/s²
Substitute into the equation above
t = (0-15.45)/-0.266
t = 58.1 seconds
Hence total time taken to cover the distance
T = 7.77+58.1
T = 65.87 s
Linear momentum is in a straight line and depends on the objects mass and velocity.
Angular (rotational) momentum depends on the objects mass, velocity, and radius.