Answer:a
Explanation:
We have to lift the load two loads up one story, so energy required is
let m be the mass of each load and h is the height of each story
Energy 

Here energy gained is the potential energy which depends upon the datum(floor).
For lifting one load up one story
Energy required

thus
is half of 
So option a is correct
We shall convert all of the densities to lbs/gal, so the product of
BTU/lbs and lbs/gal gives us the basis of comparison, which was "ratio of energy to volume".
grams / ml x 1 lbs/454 grams → 1 lbs/ 454 ml
1 lbs/454 ml x 3785.41 ml/gal → 3785.41 lbs/454gal
Conversion of g/ml = 8.34 lbs/gal
Looking at each fuel:
Kerosene:
18,500 x (8.34 x 0.82) = 126,517 BTU/gal
Gasoline:
20,900 x (8.34 x 0.737) = 128,463 BTU/gal
Ethanol:
11,500 x (8.34 x 0.789) = 75,673 BTU/gal
Hydrogen:
61,000 x (8.34 x 0.071) = 36,120 BTU/gal
The best fuel in terms of energy to volume ratio is Gasoline.
Gallons required:
BTU needed / BTU per gallon
= 85.2 x 10⁹ / 128,463
= 6.6 x 10⁵ gallons
Answer:
(a) 0.204 Weber
(b) 0.22 Volt
Explanation:
N = 100, radius, r = 10 cm = 0.1 m, B = 0.0650 T, angle is 90 degree with the plane of coil, so theta = 0 degree with the normal of coil.
(a) Magnetic flux, Ф = N x B x A
Ф = 100 x 0.0650 x 3.14 x 0.1 0.1
Ф = 0.204 Weber
(b) B1 = 0.0650 T, B2 = 0.1 T, dt = 0.5 s
dB / dt = (B2 - B1) / dt = (0.1 - 0.0650) / 0.5 = 0.07 T / s
induced emf, e = N dФ/dt
e = N x A x dB/dt
e = 100 x 3.14 x 0.1 x 0.1 x 0.07 = 0.22 V
Answer:
The heat energy required is, E = 2200 J
Explanation:
Given,
The mass of paraffin, m = 2 Kg
The energy required to raise the temperature of the paraffin by 200° C = 44000 J
Then the heat energy required to raise the temperature of the paraffin by 10° C is given by,
Since 44000 J raises temperature by 200° C, then
E = 44000 J / 20
= 2200 J
Hence, the energy required to raise the temperature of the paraffin by 10° C is, E = 2200 J