Explanation:
thermal expansion ∝L = (δL/δT)÷L ----(1)
δL = L∝L + δT ----(2)
we have δL = 12.5x10⁻⁶
length l = 200mm
δT = 115°c - 15°c = 100°c
putting these values into equation 1, we have
δL = 200*12.5X10⁻⁶x100
= 0.25 MM
L₂ = L + δ L
= 200 + 0.25
L₂ = 200.25mm
12.5X10⁻⁶ *115-15 * 20
= 0.025
20 +0.025
D₂ = 20.025
as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0
Answer: hope it helps
Explanation:Moving air has a force that will lift kites and balloons up and down. Air is a mixture ... Here is a simple computer simulation that you can use to explore how wings make lift. ... All these dimensions together combine to control the flight of the plane. A pilot ... When the rudder is turned to one side, the airplane moves left or right.
Answer:
The correct option is;
D. Market...Command
Explanation:
In a mixed economy, socialism and capitalism are combined in the economic policy, such the economy allows ownership of and offers protection for private property as well as provision of certain degree of allowance of capital utilization by the private sector. The government of a country with a mixed economic system can disrupt, obstruct, or restrict the activities taking place in the economy in order to meet the social objectives of the country's.
Answer:
A) Cancer of the Lungs
B)Larynx and Urinary Tract, as well as nervous system and kidney damage
Explanation:
Answer: Attached below is the missing diagram
answer :
A) 1) Wr > WI, 2) Qc' > Qc
B) 1) QH' > QH, 2) Qc' > Qc
Explanation:
л = w / QH = 1 - Qc / QH and QH = w + Qc
<u>A) each cycle receives same amount of energy by heat transfer</u>
<u>(</u> Given that ; Л1 = 1/3 ЛR )
<em>1) develops greater bet work </em>
WR develops greater work ( i.e. Wr > WI )
<em>2) discharges greater energy by heat transfer</em>
Qc' > Qc
solution attached below
<u>B) If Each cycle develops the same net work </u>
<em>1) Receives greater net energy by heat transfer from hot reservoir</em>
QH' > QH ( solution is attached below )
<em>2) discharges greater energy by heat transfer to the cold reservoir</em>
Qc' > Qc
solution attached below