Explanation:
There are two ways to find out the equivalent impulse response of the system.
1. Convolution in time domain
2. Simple multiplication in Laplace domain
2nd method is efficient, easy and is less time consuming.
Step 1: Take the Laplace transform of the given three impulse response functions to convert time domain signals into s-domain
Step 2: Once we get signals in s-domain, multiply them algebraically to get the equivalent s-domain response.
Step 3: Take inverse Laplace transform of the equivalent impulse response to convert from s-domain into time domain.
Solution using Matlab:
Step 1: Take Laplace Transform
Ys1 = 1/(s + 1)
Ys2 = 1/s - exp(-s/2)/s
Ys3 = exp(-3*s)
Step 2: Multiplication in s-domain
Y = (exp(-(7*s)/2)*(exp(s/2) - 1))/(s*(s + 1))
Step 3: Inverse Laplace Transform (Final Solution in Time Domain)
h = heaviside(t - 7/2)*(exp(7/2 - t) - 1) - heaviside(t - 3)*(exp(3 - t) - 1)
Answer:
False.
Explanation:
False. The pressure is above pressure at critical point (22.064 MPa.), the limit where pressure can prevent boiling.
Answer:
c
Explanation:
if someone is wrong that they can help with
Answer:
Explanation:
Given
charge is placed at 
another charge of
is at 
We know that Electric field due to positive charge is away from it and Electric field due to negative charge is towards it.
so net electric field is zero somewhere beyond negatively charged particle
Electric Field due to
at some distance r from it

Now Electric Field due to
is

Now 



thus 
Thus Electric field is zero at some distance r=1.43 cm right of