1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
12

Air modeled as an ideal gas enters a turbine operating at steady state at 1040 K, 278 kPa and exits at 120 kPa. The mass flow ra

te is 5.5 kg/s, and the power developed is 1120 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine
(a) The temperature of the air at the turbine exit, in K.
(b) The isentropic turbine efficiency.
Engineering
1 answer:
gladu [14]3 years ago
4 0

Answer:

a) T_{2}=837.2K

b) e=91.3 %

Explanation:

A) First, let's write the energy balance:

W=m*(h_{2}-h_{1})\\W=m*Cp*(T_{2}-T_{1})  (The enthalpy of an ideal gas is just function of the temperature, not the pressure).

The Cp of air is: 1.004 \frac{kJ}{kgK} And its specific R constant is 0.287 \frac{kJ}{kgK}.

The only unknown from the energy balance is T_{2}, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

T_{2}=T_{1}+\frac{W}{mCp}=1040K-\frac{1120kW}{5.5\frac{kg}{s}*1.004\frac{kJ}{kgk}} \\T_{2}=837.2K

B) The isentropic efficiency (e) is defined as:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}

Where {h_{2s} is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because h_{2}-h_{1} can be obtained from the energy balance  \frac{W}{m}=h_{2}-h_{1}

h_{2}-h_{1}=\frac{-1120kW}{5.5\frac{kg}{s}}=-203.64\frac{kJ}{kg}

An entropy change for an ideal gas with  constant Cp is given by:

s_{2}-s_{1}=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})

You can review its deduction on van Wylen 6 Edition, section 8.10.

For the isentropic process the equation is:

0=Cpln(\frac{T_{2}}{T_{1}})-Rln(\frac{P_{2}}{P_{1}})\\Rln(\frac{P_{2}}{P_{1}})=Cpln(\frac{T_{2}}{T_{1}})

Applying logarithm properties:

ln((\frac{P_{2}}{P_{1}})^{R} )=ln((\frac{T_{2}}{T_{1}})^{Cp} )\\(\frac{P_{2}}{P_{1}})^{R}=(\frac{T_{2}}{T_{1}})^{Cp}\\(\frac{P_{2}}{P_{1}})^{R/Cp}=(\frac{T_{2}}{T_{1}})\\T_{2}=T_{1}(\frac{P_{2}}{P_{1}})^{R/Cp}

Then,

T_{2}=1040K(\frac{120kPa}{278kPa})^{0.287/1.004}=817.96K

So, now it is possible to calculate h_{2s}-h_{1}:

h_{2s}-h_{1}}=Cp(T_{2s}-T_{1}})=1.004\frac{kJ}{kgK}*(817.96K-1040K)=-222.92\frac{kJ}{kg}

Finally, the efficiency can be calculated:

e=\frac{h_{2}-h_{1}}{h_{2s}-h_{1}}=\frac{-203.64\frac{kJ}{kg}}{-222.92\frac{kJ}{kg}}\\e=0.913=91.3 %

You might be interested in
A room is kept at −5°C by a vapor-compression refrigeration cycle with R-134a as the refrigerant. Heat is rejected to cooling wa
Fed [463]

Answer:

note:

<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>

Download docx
4 0
3 years ago
Read 2 more answers
What is the velocity of flow in an asphalt channel that has a hydraulic radius of 3.404 m, length of 200 m and bed slope of 0.00
yKpoI14uk [10]

Answer:

The velocity of flow is 10.0 m/s.

Explanation:

We shall use Manning's equation to calculate the velocity of flow

Velocity of flow by manning's equation is given by

V=\frac{1}{n}R^{2/3}S^{1/2}

where

n = manning's roughness coefficient

R = hydraulic radius

S = bed slope of the channel

We know that for an asphalt channel value of manning's roughness coefficient = 0.016

Applying values in the above equation we obtain velocity of flow as

V=\frac{1}{0.016}\times 3.404^{2/3}\times 0.005^{1/2}\\\\\therefore V=10.000m/s

7 0
3 years ago
Scanning the road can be thought of as
maw [93]

Answer:

Observational Skills

Explanation:

Observing the area also known as scanning the scene

5 0
3 years ago
Read 2 more answers
A vertical pole consisting of a circular tube of outer diameter 127 mm and inner diameter 115 mm is loaded by a linearly varying
Anna [14]

Maximum shear stress in the pole is 0.

<u>Explanation:</u>

Given-

Outer diameter = 127 mm

Outer radius,r_{2} = 127/2 = 63.5 mm

Inner diameter = 115 mm

Inner radius, r_{1} = 115/2 = 57.5 mm

Force, q = 0

Maximum shear stress, τmax = ?

 τmax  = \frac{4q}{3\pi } (\frac{r2^2 + r2r1 + r1^2}{r2^4 - r1^4} )

If force, q is 0 then τmax is also equal to 0.

Therefore, maximum shear stress in the pole is 0.

3 0
3 years ago
In a certain chemical plant, a closed tank contains ethyl alcohol to a depth of 71 ft. Air at a pressure of 17 psi fills the gap
Yuliya22 [10]

Answer:

the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi

Explanation:

Given that;

depth 1 = 71 ft

depth 2 = 10 ft

pressure p = 17 psi = 2448 lb/ft²

depth h = 71 ft - 10 ft = 61 ft

we know that;

p = P_air + yh

where y is the specific weight of ethyl alcohol ( 49.3 lb/ft³ )

so we substitute;

p = 2448 + ( 49.3 × 61 )

= 2448 + 3007.3

= 5455.3 lb/ft³

= 37.88 psi

Therefore, the pressure at a closed valve attached to the tank 10 ft above its bottom is 37.88 psi

5 0
3 years ago
Other questions:
  • Describe three advantages and three disadvantages of JIT?
    12·1 answer
  • What is the air change rate (ACH) for a 100 ft^2 (9.3 m^2) space with a 10 ft (3.0 m) ceiling and an airflow rate of 200 cfm (95
    12·1 answer
  • A steady state and continuous separator has a total feed rate of 100. kg/h of a 55.0 wt. % benzene mixture. The balance is tolue
    7·1 answer
  • The pressure forces on a submersed object will be (A)- Tangential to the objects body (B)- Parallel (C)- Normal (D)- None of the
    10·1 answer
  • The Danish scientist Niels Bohr proposed a model of the atom that is not totally accurate today but still contains components th
    12·1 answer
  • 2. There are three drawings that architects and designers use to indicate spaces. What are these drawing?
    9·1 answer
  • A motor vehicle has a mass of 1200kg and the road wheels have a radius of 360mm. The engine rotating parts have a moment of iner
    5·1 answer
  • Name the famous engineer in the world​
    10·2 answers
  • if stall speed in ktas for an aircraft us 100 ktas at sea level, what is the stall speed in ktas of the aircraft at 5000 ft dens
    7·1 answer
  • Drag each label to the correct location on the chart. Classify the organisms based on how they obtain food.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!