Answer:
The phase difference is 
Explanation:
From the question we are told that
The distance between the slits is
The distance to the screen is 
The wavelength is 
The distance of the wave from the central maximum is 
Generally the path difference of this waves is mathematically represented as

Here
is the angle between the the line connecting the mid-point of the slits with the screen and the line connecting the mid-point of the slits to the central maximum
This implies that

=> 
![\theta = tan ^{-1} [\frac{5*10^{-3}}{1}]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20tan%20%5E%7B-1%7D%20%5B%5Cfrac%7B5%2A10%5E%7B-3%7D%7D%7B1%7D%5D)

Substituting values into the formula for path difference
The phase difference is mathematically represented as

Substituting values

Converting to degree
the solution is subtracted by 360° in order to get the actual angle
Answer:
71 % of the earth's surface is covered in water
Answer:
Part 1) Time of travel equals 61 seconds
Part 2) Maximum speed equals 39.66 m/s.
Explanation:
The final speed of the train when it completes half of it's journey is given by third equation of kinematics as

where
'v' is the final speed
'u' is initial speed
'a' is acceleration of the body
's' is the distance covered
Applying the given values we get

Now the time taken to attain the above velocity can be calculated by the first equation of kinematics as

Since the deceleration is same as acceleration hence the time to stop in the same distance shall be equal to the time taken to accelerate the first half of distance
Thus total time of journey equals
Part b)
the maximum speed is reached at the point when the train ends it's acceleration thus the maximum speed reached by the train equals 
You would see mountains off in the distance as if the earth was actually flat. but it seems flat because its so big