Answer:
potential enrgy U = m g L sin θ
speed V = √(2g L sin θ)
Explanation:
The expression for the gravitational potential energy of a body is
U = mg Y - mg Yo
Where Y give us a constant initial energy from which the differences are measured, for general simplicity it is selected as zero, Yo= 0
What we find an expression for height, let's use trigonometry
sin θ= Y / L
Y = l sin θ
We substitute in the power energy equation
U = m g L sin θ
2. The mechanical energy of the system is conserved, so we will write the mechanical energy at two points the highest and the lowest
Highest Em = U
Lower Em = K
U = K
m g L sin θ = ½ m v²
V = √(2g L sin θ)
Answer: C. rotated , inducted current C. rotated , inducted current
Explanation let me know if im wrong
Answer:
500 kg
Explanation:
It is given that,
The mass of a open train car, M = 5000 kg
Speed of open train car, V = 22 m/s
A few minutes later, the car’s speed is 20 m/s
We need to find the mass of water collected in the car. It is based on the conservation of momentum as follows :
initial momentum = final momentum
Let m is final mass
MV=mv

Water collected = After mass of train - before mass of train
= 5500 - 5000
= 500 kg
So, 500 kg of water has collected in the car.
Solids are the best at conducting heat.
To declare an image is real you would call it “authentic”