I believe your answer Is C. An ammonia molecule has a trigonometrical pyramidal shape. Figure C has a <span>has a trigonometrical pyramidal shape.</span>
I hope I help
Remember that any intersection of lines is a C, and that the number of hydrogens attached are the necessary to complet the 4 bonds.
1) CH3 - CH (OH) - CH (CH3) -CH3
2) CH3 - O - CH(CH3)-CH2 - CH3
I have used the parenthesis to indicate that the radical inside is in other branch, bonded by a single line -
The job outlook for physical therapists<u> "will improve over time".</u>
Physical therapists, help harmed or sick individuals enhance their development and deal with their agony. These therapists are frequently an imperative piece of the restoration, treatment, and counteractive action of patients with unending conditions, ailments, or wounds.
Physical therapists commonly work in private workplaces and centers, clinics, patients' homes, and nursing homes. They invest quite a bit of their energy in their feet, effectively working with patients.
The ml is also called as the magnetic quantum number. The value
of ml can range from –l to +l including zero. Hence all of the possible values for ml given
that l = 2 are:
<span>-2, -1, 0, + 1, + 2</span>
The enthalpy change of the reaction below (ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
The bond energies data is given as follows:
BE for C≡O = 1072 kJ/mol
BE for Cl-Cl = 242 kJ/mol
BE for C-Cl = 328 kJ/mol
BE for C=O = 766 kJ/mol
The enthalpy change for the reaction is given as :
ΔHr×n = ∑H reactant bond - ∑H product bond
ΔHr×n = ( BE C≡O + BE Cl-Cl) - ( BE C=O + BE 2 × Cl-Cl )
ΔHr×n = ( 1072 + 242 ) - ( 766 + 656 )
ΔHr×n = 1314 - 1422
ΔHr×n = - 108 kJ
Thus, The enthalpy change of the reaction below ( ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
To learn more about enthalpy here
brainly.com/question/13981382
#SPJ1