If this is a true or false question then the answer is true.
Answer:
Photon of light
Explanation:
According to Bohr's model of the atom, electrons in atoms are found in specific energy levels. These energy levels are called stationary states, an electrons does not radiate energy when it occupies any of these stationary states.
However, an electron may absorb energy and move from one energy level or stationary state to another. The energy difference between the two energy levels must correspond to the energy of the photon of light absorbed in order to make the transition possible.
Since electrons are generally unstable in excited states, the electron quickly jumps back to ground states and emits the excess energy absorbed. The frequency or wavelength of the emitted photon can now be measured and used to characterize the transition. This is the principle behind many spectrometric and spectrophotometric methods.
Answer:
<h2>Oxygen has six valence electrons, two in the 2s subshell and four in the 2p subshell.</h2>
<h3>Valence electrons are the electrons in the outermost shell, or energy level, of an atom. </h3>
<h3>Configuration of oxygen's valence electrons as 2s²2p⁴.</h3>
Explanation:
#Let's Study
#I Hope It's Help
#Keep On Learning
#Carry On Learning
![\\ \green{MaggieEve}](https://tex.z-dn.net/?f=%5C%5C%20%5Cgreen%7BMaggieEve%7D)
The volume of SO2 produced at 325k is calculated as below
calculate the moles of SO2 produced which is calculated as follows
write the reacting equation
K2SO3 +2 HCl = 2KCl +H2O+ SO2
find the moles of HCl used
=mass/molar mass = 15g/ 36.5 g/mol =0.411 moles
by use of mole ratio between HCl to SO2 which is 2:1 the moles of SO2 is therefore = 0.411 /2 =0.206 moles of SO2
use the idea gas equation to calculate the volume SO2
that is V=nRT/P
where n=0.206 moles
R(gas constant) = 0.082 L.atm/ mol.k
T=325 K
P=1.35 atm
V=(0.206 moles x 0.082 L.atm/mol.k x325 k)/1.35 atm = 4.07 L of SO2
Answer:
433 m
Explanation:
Since the fall represents motion under gravity, we use the equation
s = ut - 1/2gt² where s = height of cliff or distance bowling ball falls through, u = initial velocity of bowling ball = 0 m/s(since it starts from rest), t = time = 9.4 s and g = acceleration due to gravity = -9.8 m/s².
So, substituting the values of the variables into the equation, we have
s = 0 m/s × 9.4 s - 1/2 × 9.8 m/s² × (9.4 s)²
s = 0 m - 1/2 × -9.8 m/s² × 88.36 s²
s = 1/2(865.928 m)
s = 432.964
s ≅ 433 m