Answer:
7.89 g
Explanation:
Step 1: Write the balanced equation
S₈ + 16 F₂(g) → 8 SF₄
Step 2: Calculate the moles corresponding to 2.34 g of S₈
The molar mass of S₈ is 256.52 g/mol.

Step 3: Calculate the moles of SF₄ produced from 9.12 × 10⁻³ mol of S₈
The molar ratio of S₈ to SF₄ is 1:8. The moles of SF₄ produced are 8/1 × 9.12 × 10⁻³ mol = 0.0730 mol
Step 4: Calculate the mass corresponding to 0.0730 moles of SF₄
The molar mass of SF₄ is 108.07 g/mol.

Answer:
table A
Explanation:
its table A because it requires less force push. the less force used the less friction there is.
the less friction there is the more smooth a surface is.
Answer:
Explanation:
PLEASE MAKE YOUR QUESTION CLEAR
Answer : The activation energy for the reaction is, 43.4 KJ
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at 
= rate constant at
= 
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{3K_1}{K_1})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{291K}-\frac{1}{310K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B3K_1%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B291K%7D-%5Cfrac%7B1%7D%7B310K%7D%5D)

Therefore, the activation energy for the reaction is, 43.4 KJ
Answer:
263.9g
Explanation
Total mass of solution= mass of solute + mass of solvent = 13.9+250g =263.9g
Mass of surrounding= mass of calorimeter= 263.9g