Answer:
The head loss in Psi is 0.390625 psi.
Explanation:
Fluid looses energy in the form of head loss. Fluid looses energy in the form of head loss when passes through the valve as well.
Given:
Factor cv is 48.
Flow rate of water is 30 GPM.
GPM means gallon per minute.
Calculation:
Step1
Expression for head loss for the water is given as follows:

Here, cv is valve coefficient, Q is flow rate in GPM and h is head loss is psi.
Step2
Substitute 48 for cv and 30 for Q in above equation as follows:


h = 0.390625 psi.
Thus, the head loss in Psi is 0.390625 psi.
Answer:
250.7mw
Explanation:
Volume of the reservoir = lwh
Length of reservoir = 10km
Width of reservoir = 1km
Height = 100m
Volume = 10x10³x10³x100
= 10⁹m³
Next we find the volume flow rate
= 0.1/100x10⁹x1/3600
= 277.78m³/s
To get the electrical power output developed by the turbine with 92 percent efficiency
= 0.92x1000x9.81x277.78x100
= 250.7MW
Answer:
a. Rockwell 3. hardness
b. Instron 2. stress vs strain
c. Charpy 1. impact strength
d. Fatigue 4. Endurance Limit
e. Brinell 3. hardness
f. Izod 1. impact strength
Explanation:
Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.
Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.
Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.
Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.
Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.