Answer:
The solution for the given problem is done below.
Explanation:
M1 = 2.0
= 0.3636
= 0.5289
= 0.7934
Isentropic Flow Chart: M1 = 2.0 ,
= 1.8
T1 =
(1.8)(288K) = 653.4 K.
In order to choke the flow at the exit (M2=1), the above T0* must be stagnation temperature at the exit.
At the inlet,
T02=
= (1.8)(288K) = 518.4 K.
Q= Cp(T02-T01) =
= 135.7*
J/Kg.
Answer:
(a)
(b)
Explanation:
(a)
Volume, V of unit cell
Number of unit cells, N
Where
is weight of material and
is density of material
(b)
Number of atoms in paper clip
This is a product of number of unit cells and number of atoms per cell
Since iron has 2 atoms per cell
Number of atoms of iron=
B is the answer I believe so
Answer:
V1=5<u>ft3</u>
<u>V2=2ft3</u>
n=1.377
Explanation:
PART A:
the volume of each state is obtained by multiplying the mass by the specific volume in each state
V=volume
v=especific volume
m=mass
V=mv
state 1
V1=m.v1
V1=4lb*1.25ft3/lb=5<u>ft3</u>
state 2
V2=m.v2
V2=4lb*0.5ft3/lb= <u> 2ft3</u>
PART B:
since the PV ^ n is constant we can equal the equations of state 1 and state 2
P1V1^n=P2V2^n
P1/P2=(V2/V1)^n
ln(P1/P2)=n . ln (V2/V1)
n=ln(P1/P2)/ ln (V2/V1)
n=ln(15/53)/ ln (2/5)
n=1.377
Answer:
The answer is below
Explanation:
Given that:
Diameter (D) = 0.03 mm = 0.00003 m, length (L) = 2.4 mm = 0.0024 m, longitudinal tensile strength
, Fracture strength

a) The critical length (
) is given by:

The critical length (4.5 mm) is greater than the given length, hence th composite can be produced.
b) The volume fraction (Vf) is gotten from the formula:
