Democritus was the first person to theorize the existence of atoms.
<h3>
Answer:</h3>
The root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
<h3>
Solution and Explanation:</h3>
- To find how fast molecules or particles of gases move at a particular temperature, the root mean square speed is calculated.
- Root mean square speed of a gas is calculated by using the formula;

Where R is the molar gas constant, T is the temperature and M is the molar mass of gas in Kg.
<h3>Step 1: Root mean square speed from O₂</h3>
Molar mass of Oxygen is 32.0 g/mol or 0.032 kg/mol
Temperature = 65 degrees Celsius or 338 K
Molar gas constant = 8.3145 J/k.mol


<h3>
Step 2: Root mean square speed of UF₆ </h3>
The molar mass of UF₆ is 352 g/mol or 0.352 kg/mol


Therefore; the root mean square speeds of O₂ and UF₆ is 513m/s and 155 m/s respectively.
Answer:
3.33 L
Explanation:
We can solve this problem by using the equation:
Where the subscript 1 refers to one solution and subscript 2 to the another solution, meaning that in this case:
We input the data:
- 0.25 M * 100 L = 7.5 M * V₂
Thus the answer is 3.33 liters.
Answer:
Excited state of an electron is the state attained by an electron after it has absorbed energy and it moves further from the nucleus.
an electron is at higher energy when excited and at lower energy when at ground state.
an excited electron is less stable due to the decrease in the nuclear force of attraction and the grounded electron is more stable due to it's close distance to the nucleus.
The balanced chemical formula should be Al2(SO4)3 + 6NaOH = 2Al(OH)3 + 3Na2SO4
Therefore the coefficient of Al(OH)3 is 2!
Hope that helps :)