Answer:
14.53ML
Explanation:
V1=218
V2=?
P2=15p1
USING BOYLE'S LAW
P1V1=P2V2
V2=P1V1/P2=P1(218ML)/15P1
=14.53ML
When y equals 5, x is 104.3
When y equals 3 then x is 108.3
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

<h3><u>If y equals 5 what is x ?</u></h3>
Substitute y = 5 in given expression
5 = 57.15 - 0.5(x)
5 = 57.15 - 0.5x
0.5x = 57.15 - 5
0.5x = 52.15
Divide both sides by 0.5
x = 104.3
Thus when y equals 5, x is 104.3
<h3><u>If y = 3 what is x ?</u></h3>
Substitute y = 3 in given expression
3 = 57.15 - 0.5(x)
3 = 57.15 - 0.5x
0.5x = 57.15 - 3
0.5x = 54.15
Divide both sides by 0.5
x = 108.3
Thus when y equals 3 then x is 108.3
Answer:
the answer is D) 23 carbon atoms, 34 hydrogen atoms, and 2 oxygen atoms
Explanation:
i took the test and got a 100%
91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.
Explanation:
2NaN3======2Na+3N2
This is the balanced equation for the decomposition and production of sodium azide required to produce nitrogen.
From the equation:
2 moles of NaNO3 will undergo decomposition to produce 3 moles of nitrogen.
In the question moles of nitrogen produced is given as 2.104 moles
so,
From the stoichiometry,
3N2/2NaN3=2.104/x
= 3/2=2.104/x
3x= 2*2.104
= 1.4 moles
So, 1.4 moles of sodium azide will be required to decompose to produce 2.104 moles of nitrogen.
From the formula
no of moles=mass/atomic mass
mass=no of moles*atomic mass
1.4*65
= 91 grams of sodium azide required to decompose and produce 2.104 moles of nitrogen.