Answer:
Explanation:
The power of each of the speakers is 0.535 W. At a distance d intensity of sound can be found by the following formula
Intensity of sound = Power / 4π d²
= .535 / 4 x 3.14 x (27.3/2)²
= 2.286 x 10⁻⁴ J m⁻² s⁻¹
Intensity of sound due to other source = 5.715 x 10⁻⁵J m⁻² s⁻¹
Total intensity = 2 x 2.286 x 10⁻⁴J m⁻² s⁻¹
= 4.57 x 10⁻⁴J m⁻² s⁻¹
b ) In this case, man is standing at distances 18.15 m and 9.15 m from the sources .
The total intensity of sound reaching him is as follows
0.535 / (4 π x18.15² ) + 0.535 / (4 π x9.15² )
= 1.293 x 10⁻⁴ + 5.087 x 10⁻⁴
= 6.38 x 10⁻⁴J m⁻² s⁻¹
Answer: WAIT WHATTTT i have that same test due today and the answer is in explanation
Explanation:
Bike, truck train. we are in the same school i think. Its imma say the incisal JMES Im Lusi i used to help in the library
Answer:
- The procedure is: solve the quadratic equation for
.
Explanation:
This question assumes uniformly accelerated motion, for which the distance d a particle travels in time t is given by the general equation:
That is a quadratic equation, where the independent variable is the time
.
Thus, the procedure that will find the time t at which the distance value is known to be D is to solve the quadratic equation for
.
To solve it you start by changing the equation to the general form of the quadratic equations, rearranging the terms:
Some times that equation may be solved by factoring, and always it can be solved by using the quadratic formula:
Where:

That may have two solutions. Some times one of the solution makes no physical sense (for example time cannot be negative) but others the two solutions are valid.
Answer:
<u>Frequency</u>- number of wave cycles that occur in a given amount of time.
<u>Pitch</u>- number of wavelengths in a given amount of time.
<u>Amplitude</u>- fluctuation or displacement of a wave from its mean value. That means how high or low they are away from the center line.
<u>Volume</u>- The perception of loudness from the intensity of a sound wave. The higher the intensity of a sound, the louder it is perceived in our ears, and the higher volume it has.
<u>Wavelength</u>- the distance between the tops of the "waves".
Answer:
More than enough solar energy (8.2 million quad BTUs, 1 quad = 2.9 x1011 kWh) hits Earth's surface each year to meet all of societies' needs. Currently we use about 400 quads per year to run our society. Good building design allows passive use of sunlight to heat homes. Simple solar collectors are used to heat water and cook food. As useful as it is for these purposes, thermal energy from sunlight is still a low quality energy compared to electricity. Computers, most machinery, light bulbs, subway trains, and much more all require electricity. It is possible to turn thermal energy from the sun into electricity. In this unit we will examine how.
. We will also examine how to make electricity directly from light using the photovoltaic cells.