You need to divide the motion into its component: vertical and horizontal motion.
The time taken to fall vertically from the cliff is equal to the time taken to move horizontally.
Using the vertical component, which is an accelerated motion with an initial velocity equal to zero, we can solve for t:
h = 1/2 · g · t²
t = √(2·h / g)
= √(2·50 / 9.8)
= 3.2 s
Horizontally, it is a constant motion:
d = v · t
= 20 · 3.2
= 64 m
The ball will strike the ground at a distance of 64 meters from the cliff.
the missing force is spring force.
The object is hanging from the spring and the spring is stretched by some distance from its equilibrium position. due to this stretch in the spring , a spring force starts acting on the object trying to regain its equilibrium position.
the spring force is given as
F = kx
where F = spring force ,k = spring constant , x = stretch in the spring.
the spring force balances the weight of the object in down direction and hence keeps the block from falling down.
Answer:
Solar energy; It benefits life because it does not produce greenhouse chemicals that are dangerous to the evironment, it uses the hot light of the plasma from the sun to pass through the solar panels, form there it can be stored and used in batteries already built in, it also provides lots of money savings troughout the seasons, and it can save 155 dollars a year.
Explanation:
Answer:
Explanation:
We are not told where A and B are, but I'll assume that they are two points on the orbit of earth about the sun.
As that orbit is an ellipse, the two points likely do not have the same distance between the earth and sun.
As gravity varies with the inverse of the square of the distance (F = GMm/d²), the force at the closer distance will be greater than the force at the longer distance.