Answer:
a. 52.8
Explanation:
To find the number of moles of HCl we use the relation M₁V₁=M₂V₂
where M₁ is the initial molarity, M₂ the new molarity, V₁ the initial volume used, and V₂ the final volume obtained.
M₁=7.91 M
M₂=2.13 M
V₁=?
V₂=196.1 mL
Replacing these values in the relationship.
M₁V₁=M₂V₂
7.91 M× V₁=2.13 M×196.1 mL
V₁=(2.13 M×196.1 mL)/7.91 M
=52.8 mL
Hey there!
Just say what color you think the mixture would look like if those elements were combined. Personally I don't know because I don't have context, but if it comes to it just pick a color :)
Good luck, have a good night.
The model<span> of the </span>atom<span> has dramatically </span>changed<span> over many many years.We learn </span>atoms<span> make up different substances and are the smallest particles of matter. which can have subatomic particles that are very small portions of matter.at first scientist only thought there were electrons which are negatively charged.</span>
Answer:
12.32 L.
Explanation:
The following data were obtained from the question:
Mass of CH4 = 8.80 g
Volume of CH4 =?
Next, we shall determine the number of mole in 8.80 g of CH4. This can be obtained as follow:
Mass of CH4 = 8.80 g
Molar mass of CH4 = 12 + (1×4) = 12 + 4 = 16 g/mol
Mole of CH4 =?
Mole = mass/Molar mass
Mole of CH4 = 8.80 / 16
Mole of CH4 = 0.55 mole.
Finally, we shall determine the volume of the gas at stp as illustrated below:
1 mole of a gas occupies 22.4 L at stp.
Therefore, 0.55 mole of CH4 will occupy = 0.55 × 22.4 = 12.32 L.
Thus, 8.80 g of CH4 occupies 12.32 L at STP.
Answer:
Tetrahedral, trigonal pyramidal, trigonal bipyramidal.
Explanation:
The VSPER theory states that the bonds of sharing electrons and the lone pairs of electrons will repulse as much as possible. So, by the repulsion, the molecule will have some shape.
In the ion PO₄³⁻, the central atom P has 5 electrons in its valence shell, so it needs 3 electrons to be stable. Oxygen has 6 electrons at the valence shell and needs 2 to be stable. 3 oxygens share 1 pair of electrons with P, and the two lone pair remaining in P is shared with the other O, then the central atom makes 4 bonds and has no lone pairs, the shape is tetrahedral.
In the ion H₃O⁺, the central atom O has 6 electrons in its valence shell and needs 2 electrons to be stable. The hydrogen has 1 electron, and need 1 more to be stable. The hydrogens share 1 pair of electrons with the oxygen, then it remains 3 electrons at the central atom, and the VSPER theory states that the shape will be a trigonal pyramidal.
In the AsF₅, the central atom As has 5 valence electrons, and F has 1 electron in its valence shell, so each F shares one pair of electrons with As, and there are no lone pairs in the central atom. For 5 bonds without lone pairs, the shape is trigonal bipyramidal.