Answer: 500 s
Explanation:
Speed
is defined as a relation between the distance
and time
:

Where:
is the speed of light in vacuum
is the distance between the Earth and Sun
is the time it takes to the light to travel the distance
Isolating
:


Finally:

Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same
Plugging in for the Earth's mass and for G, we have 11.2 km/s for the escape velocity for an object launched from the Earth's surface. This is about 25,000 miles per hour
Answer:
it should be right it's from go.ogle hm!!!
Explanation:
Anterior or ventral - front (example, the kneecap is located on the anterior side of the leg). Posterior or dorsal - back (example, the shoulder blades are located on the posterior side of the body). Medial - toward the midline of the body (example, the middle toe is located at the medial side of the foot).