Answer:
a) the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
b) spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Explanation:
Given that;
Gravitational acceleration g = 9.81 m/s²
Mass m = 5 kg
Extension of the spring X = 50 mm = 0.05 m
Spring constant k = ?
we know that;
mg = kX
5 × 9.81 = k(0.05)
k = 981 N/m
a)
Given that; Acceleration of the elevator a = 2 m/s² upwards
Extension of the spring in this situation = X1
Force exerted by the spring = F
we know that;
ma = F - mg
ma = kX1 - mg
we substitute
5 × 2 = 981 × X1 - (5 ×9.81 )
X1 = 0.06019 m
X1 = 60.19 mm
Therefore the spring will stretch 60.19 mm
with the same box attached as it accelerates upwards
B)
Acceleration of the elevator = a
The spring is relaxed i.e, it is not exerting any force on the box.
Only the weight force of the box is exerted on the box.
ma = mg
a = g
a = 9.81 m/s² downwards.
Therefore spring will be relaxed when the elevator accelerates downwards at 9.81 m/s²
Answer:
D. both have electrons that orbit the atomic nucleus in a simaler way
Explanation:
the bohrs model electrons orbit in a circular pattern were as the modern atomic model orbit in every which way
Answer:
(a) θ1 = 942.5rad, (b) θ2 = 13195 rad
Explanation:
(a) Given
ωo = 0 rad/s
ω = 3600rev/min = 3600×2(pi)/60 rad/s
ω = 377rad/s
t1 = 5s
θ1 = (ω + ωo)t/2
θ1 = (377 +0)×5/2
θ1 = 942.5 rads
(b) ωo = 377rad/s
ω = 0 rad/s
t2 = 70s
θ2 = (ω + ωo)t/2
θ2 = (377 +0)×70/2
θ2 = 13195 rad
Answer:
The temperature change per compression stroke is 32.48°.
Explanation:
Given that,
Angular frequency = 150 rpm
Stroke = 2.00 mol
Initial temperature = 390 K
Supplied power = -7.9 kW
Rate of heat = -1.1 kW
We need to calculate the time for compressor
Using formula of compression



Put the value into the formula


We need to calculate the rate of internal energy
Using first law of thermodynamics


Put the value into the formula


We need to calculate the temperature change per compression stroke
Using formula of rate of internal energy


Put the value into the formula


Hence, The temperature change per compression stroke is 32.48°.
<h3><u>Given</u><u>:</u><u>-</u></h3>
Acceleration,a = 3 m/s²
Initial velocity,u = 0 m/s
Final velocity,v = 12 m/s
<h3><u>To</u><u> </u><u>be</u><u> </u><u>calculated:-</u><u> </u></h3>
Calculate the time take by a car.
<h3><u>Solution:-</u><u> </u></h3>
According to the first equation of motion:
v = u + at
★ Substituting the values in the above formula,we get:
⇒ 12 = 0 + 3 × t
⇒ 12 = 3t
⇒ 3t = 12
⇒ t = 12/3
⇒ t = 4 sec