As the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
<h3>
What is Conservation of Energy ?</h3>
Conservation of energy state that energy is neither created nor destroy, they can only be transformed from one form to another. Energy of and object can transform from Potential energy to kinetic energy and vice versa
Given that at the top of a hill a roller coaster has gravitational potential energy due to its position. What will happen to this potential energy as the roller coaster speeds up on the way down the hill is that the potential energy to the roller coaster will start decreasing while the kinetic energy will start to increase.
The total energy of the roller coaster will be constant because of conservation of energy. As the roller coaster speeds up on the way down the hill, the potential energy will eventually reduce to zero where the total energy of the as the roller coaster will be equal to maximum kinetic energy.
Therefore, as the roller coaster speeds up on the way down the hill, the potential energy of roller coaster will be converted to kinetic energy.
Learn more about Energy here: brainly.com/question/25959744
#SPJ1
Speed=30 m/s - 1.5 m/s = 28.5 m/s forward
Answer:
The light used has a wavelenght of 4.51×10^-7 m.
Explanation:
let:
n be the order fringe
Ф be the angle that the light makes
d is the slit spacing of the grating
λ be the wavelength of the light
then, by Bragg's law:
n×λ = d×sin(Ф)
λ = d×sin(Ф)/n
λ = (3.2×10^-4 cm)×sin(25.0°)/3
= 4.51×10^-5 cm
≈ 4.51×10^-7 m
Therefore, the light used has a wavelenght of 4.51×10^-7 m.
Answer:
50 W
Explanation:
<h3>
<u>Given :</u></h3>
- Force applied = 100 N
- Distance covered = 5 metres
- Time = 10 seconds
<h3>
<u>To find :</u></h3>
Power
<h3>
<u>Solution :</u></h3>
For calculating power, we first need to know about the work done.

Now, substituting values in the above formula;
Work = 100 × 5
= 500 Nm or 500 J
We know that,

Substituting values in above formula;
Power = 500/ 10
= 50 Nm/s or 50 W
Hence, power = 50 W .